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Outline

* Typical goal of machine Learning

* Neural Network

* Deep learning

* Some common deep learning algorithms

*Many of slides adapted from Andrew Ng and G . Hinton
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Typical goal of machine learning
input output

Label: “Motorcycle”
Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation

text
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Feature engineering:

most time consuming!

Label: “Motorcycle”
Suggest tags
Image search

Speech recognition
Music classification
Speaker identification

Web search
Anti-spam
Machine translation
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Kaalia Amitabh Bachchan Dialogues.mp3

Our goal in object classification

—m-» “motorcycle”
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Face Recognition




Fingerprint recognition




Optical Character Recognition

moO ®>




Detection of Oil Slicks

e Given radar satellite images of coastal waters
Problem: Detect Oil Slicks
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» Banana
Mango



Name of Fruit

— Apple
\4 Banana
B > Mango

f(Fruit)——Name of Fruit
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Classification

f(Feature_vec) —— Fruit_type

Feature Vector Fruit_type
Color Shape
Red Elliptical Apple
Yellow Elongated Banana
Yellow Elliptical Mango
Green Elliptical Mango
Green Elongated Banana
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Classification

height

=

Linear classifier:

H if (w-X)+w>0
J if (W-X)+W <0

weight — X2

X
X

Training examples  WXas Y1)

= R?

’’’’’ (X, ¥1)}




Classification: Definition

* Given a collection of records (training set )

* Each record contains a set of attributes, one of the attributes is the
class label.

* Find a model for class attribute as g foncsign of the
values of other attributes.

e Goal: previously unseen records should be assigned
a class as accurately as possible.




Neural Network
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Elements of Neural Network

Neuron f:R¥X - R

X Z=XW, +X,W, +---+ X, W, +W,
X2
+ _Z.Q— h(z)
X . ‘ Activation
K weights W function
0




Single Perceptron

1if 22w, x> 0
0 otherwise




Training Perceptrons

For AND
o X, X, vy
Wo=7? 0 0 0

01 0

g o
1 1 1

*Initialize with random weight values
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Training Perceptrons

For AND
X; X5 Y
O 0| O
O 1, 0
1 0 O
1 1 1
Xo | X1 | Xz Summation Output
110]0]|(-1*0.3) + (0*0.5) + (0*-04) = -0.3 0
110]|1](-1%0.3) + (0*0.5) + (1*-0.4) = -0.7 0
111]10](-1*0.3) + (1*0.5) + (0*-0.4) = 0.2 1
111]1](-1%0.3)+(1*0.5) +(1*-0.4)=-0.2 0
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Gradient Descent Learning Rule

* Train the w;’s such that they minimize the squared
error

o E[Wl,...,Wn] - % ZdED (yd_hd)z
where D is the set of training examples
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Gradient Descent

Gradient:
VE[w]=[0E/owy,... OE/ow, ]
it

AW;=- aE/aWi %10\_4-'- }
=-ofow; 1/ zzd(Yd'hd)z 5.
= - 0fow; 1/ zzd(Yd'zi Wi Xi)%>
= 24(Ys~ ha)(%)




Gradient Descent

Gradient-Descent(training_examples, 1)

Each training example is a pair of the form <(x,,...x,),t>
where (x,,...,X,) is the vector of input values, and t is the
target output value

* Initialize each w; to some small random value

e Until the termination condition is met, Do

* Initialize each Aw, to zero

* For each <(x,,...x,),t>in training_examples Do
* Input the instance (x,...,x,) to the linear unit and compute the output o
* For each linear unit weight w, Do

« Aw=Aw, + 2 (y - hy) X,
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Weight Updation

* W,=-0.3 + [(0-0)1+(0-0)1+(0-1)1+(1-0)1]=-0.3
* W,= 0.5 + [(0-0)0+(0-0)0+(0-1)1+(1-0)1]= 0.5
* W,=-0.4 + [(0-0)0+(0-0)1+(0-1)0+(1-0)1]= 0.6

Xo | X1 | X2 Summation Output
110]0|(-1%0.3) + (0*0.5) + (0*0.6) = -0.3 0
110(1](-1%0.3) + (0*0.5) + (1*0.6) = 0.3 1
111]10|(-1*0.3) + (1*0.5) + (0*0.6) = 0.2 1
111]1](-1%0.3)+(1*05) +(1*0.6)=0.8 1
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Weight Updation

* W,= -0.3 + [(0-0)1+(0-1)1+(0-1)1+(1-1)1]= -2.3
* W,= 0.5 + [(0-0)0+(0-1)0+(0-1)1+(1-1)1]= -0.5
* W,= 0.6 + [(0-0)0+(0-1)1+(0-1)0+(1-1)1]= -0.4

Xo | X1 | X2 Summation Output
110]0[((-1*2.3) + (-0*0.5) + (-0*0.4) = -2.3 0
110 1](-1*2.3)+(-0*0.B5) + (-1*0.4) = -2.7 0
111]0]|(-1*2.3) +(-1*0.5) + (-0*0.4) = -2.8 0
11111[|(-1%2.3)+(-1*0.5) + (-1*0.4) = -3.2 0
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Weight Updation

* W,=-3.3 + [(0-0)1+(0-0)1+(0-0)1+(1-0)1]=-2.3
* W,= 0.5 + [(0-0)0+(0-0)0+(0-0)1+(1-0)1]= 1.5
* W,= 0.6 + [(0-0)0+(0-0)1+(0-0)0+(1-0)1]= 1.6

Xo | X1 | X2 Summation Output
1]10]0[|(-1*2.3)+(0*1.5) + (0*1.6)=-2.3 0
1 10| 1]|(-1*2.3)+(0*15) + (1*1.6) = -0.7 0
111]0](-1*2.3)+(1*15) + (0*1.6)=-0.8 0
11111]|(-1%2.3)+(1*15)+(1*1.6)=0.8 1
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Decision Surface of a Perceptron

X5

A

.|_ -

e +—> Xl
Linearly separable Non-Linearly separable

eBut functions that are not linearly separable (e.g. XOR)
XOR can solved as:
XOR(Xll X2)= AND( OR(Xll XZ)I NAND(XII XZ))
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Multilayer Perceptron (MLP)
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Multilayer Perceptron (MLP)

Input Layer Output Layer
Hidden L ayer

= o
o =
=T

=

d d
— _ — \ngt
net, = > XW; +W;, = D> X;W; =W;.X,

y;= f(net)

ny Ny
net =Y YWy +W, =D YW, =Wy, Z=f(net)
j=1 =0 36



Multilayer Perceptron (MLP)

1S 1
JW) =5 2t -2)" =5 -7
0J
AW =—n—
T ow
oJ ~ oJ onet 5 onet,
ow,, onet,  dw, < ow,
0J oJ oz .. :
% ~ dnet, o0z, onet, ==z )T (net, )
onet,
OW .

K]
Awy; = noy; = nlt, —z,) f’ (net,)y;
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Multilayer Perceptron (MLP)

8J 8J 0Oy, oOnet,

ow, dy, onet, ow,
o 011, . v 0z,
o -ayj[zguk zk>] AN
_ B azk anetk __ _ ,
= Z(t 3 et, 0y, ;(tk z, ) f' (net, )w,

5, = f'(net, )Zij5k
k=1

AW, =%, 5. =n[zwkj5k] f* (net; )x

oy
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Types of Layers

e The input layer.
— Introduces input values into the network.
— No activation function or other processing.

e The hidden layer(s).

— Perform classification of features
— Two hidden layers are sufficient to solve any problem
— Features imply more layers may be better

e The output layer.
— Functionally just like the hidden layers
— Outputs are passed on to the world outside the neural network.

39



Activation functions

e Transforms neuron’s input into output.

A 3, A 2 a,
—+1 +1 —+L
ire, ir; ‘ irs;
{a) Step function (b) Sign function {c) Sigmoid function
. /
1
0 Z

Rectified Linear Unit

40



Backpropagation Algorithm

Initialize w to some small random value

Do

* For each training example <(xy,...x,),t> Do
* compute the network outputs o,
* For each output unit k, compute 6,=0,(1-0,)(t,-0,)

* For each hidden unit j, 6,=0,(1-0;) kakj O,
* Compute w;=w;+Aw;; where Aw;=n09; X,
* Compute wy;=w,;+Aw,; where Aw,;= 10,y
Until the termination condition is met.

Return w

41



Universal Function Approximator

A one hidden layer FFNN with sufficiently large
number of hidden nodes can approximate any
function (Hornik, 1991)

9/16/2018 42



Handwritten Character Recognition

Input Layer Output Layer

Hidden Layer
O
. ) Qutput
Hesponse
Q—

Image size= 100 x 100
No. of nodes at hidden layer= 10°

No. of Classes =26
No. of Weights to be learned= 10%°

9/16/2018
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Shallow vs Deep

* Functions that can be compactly represented by a
depth k architecture with fewer computational
elements might require an larger number of
computational elements to be represented by a
depth k — 1 architecture.

Consequences dare.

= Computational: We don’t need exponentially
many elements in the layers

= Statistical: poor generalization may be expected
when using an insufficiently deep architecture for
representing some functions

9/16/2018 44



10 BREAKTHROUGH

= TECHNOLOGIES 2013

Introduction The 1C

ologies Past Years

Deep Learning

With massive
amounts of
comﬁutational power,
machines can now
recognize objects and
translate speech in
real time. Artificial
intelligence is finally

Temporary Social
Media

Messages that quickly
self-destruct could
enhance the privacy
of online
communications and
make people freer to

Prenatal DNA
Sequencing

Reading the DNA of
fetuses will be the
next frontier of the
genomic revolution.
But do you really want
to know about the
genetic problems or
musical aptitude of

Additive
Manufacturing

Skeptical about 3-D
printing? GE, the
world's largest
manufacturer, is on
the verge of using the
technology to make

Baxter: The Blue-
Collar Robot

Rodney Brooks's
newest creation is
easy to interact with,
but the complex
innovations behind the
robot show just how
hard it is to get along

getting smart. N be spontanecus. N your unborn child? jet parts. with people. N
Memoryimplants Smart Watches Ultra-Efficient Solar BigData from Cheap Supergrids

Power Phones
A maverick

neurcscientist
believes he has
deciphered the code
by which the brain
forms long-term
memories. Next:
testing a prosthetic
|mPIan_t for people
sutfering from long-
term memory loss.

>

The designers of the
Pebble watch realized
that a mobile phone is
more usetul if you
don't have to take it
out of your pocket.

>

Doubling the
efficiency of a solar
cell would completely
change the
economics of
renewable energy.
Manotechnology just
might make it
possible.

Collecting and
analyzing information
from simple cell
phones can provide
surprising insights into
how people move
about and behave —
and even help us
understand the
spread of diseases.

A new high-power
circuit breaker could
finally make highly
efficient DG power
grids practical. N



Deep Learning

* Multilayer neural networks have been around for
25 years. What’s actually new?

* We had good algorithms for learning the weights in
networks with 1 or 2 hidden layer(s)

* But these algorithms are not good at learning the
weights for networks with more hidden layers

9/16/2018 46
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Why is this hard?

You see this:

\ 194
\ 180

\ 114
' 87
\ 102

\ 94

. 68

y 41

Y| 20

\ 50
72
67

210
189
126
103
112
95
71
56
43
50
59
61

20l
190
140
115
106
79
69
638
69
57
53
58

zlz
221
188
154
131
104
98
99
75
69
66
65

199
209
176
143
122
105
39
63
56
75
84
75

213
205
165
14z
138
124
92
45
41
75
9z
78

215
191
152
149
152
129
98
60
51
73
g4
76

195
167
140
153
147
113
95
g2
73
74
74
73
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Pixel-based representation

pixel 1
» | Learning
algorithm
pixel 2
Input
== Motorbikes
Raw image = “Non”-Motorbikes

pixel 2

9/16/2018 pixel 1 v



Pixel-based representation

pixel 1
» | Learning
algorithm
pixel 2
Input
== Motorbikes
Raw image = “Non”-Motorbikes
i +
?J |
X
o
- +

9/16/2018 pixel 1 v



Pixel-based representation

pixel 1

& R

pixel 2
Input
== Motorbikes
Raw image = “Non”-Motorbikes
~ + +
TJ - |
X
Q_ |
-t o+
_ +
+ -

9/16/2018 pixel 1

Learning
algorithm

50




pixel 2

What we want

handlebars

- Feature

Input
Raw image
= +
L
_ +
+ -
9/16/2018 pixel 1

representation

E.g., Does it have Handlebars? Wheels?

=4 Motorbikes
= “Non”-Motorbikes

Wheels

» | Learning

algorithm
Features
* o
+-r+
el

Handlebars -



Some feature representations

Normalized patch Spin image
T ] s

Vel * N
ADRUE
INEELLUEE
- » T » I 4

- A
e | Al e || A

o e -
N e = LS

1
Image gradients Keypoint descriptor

SIFT

Orientation Voting

Input Image  Gradient Image

HoG

(a) (b) (c) (d) (e)

9/16/2018 Textons GLOH 52



Some feature representations

Coming up with features is often difficult, time-
consuming, and requires expert knowledge.

HoG
x % 0 4
LT To [T R PR |
' ====== i W RN
= [ofoe Zn B R
© @ © .moon |
ENNIEE= \\l/ ¢ , 4
CLI T TE
EERDEE (c) (d) (e)

9/16/2018 Textons



The brain:

potential motivation for deep learning

9/16/2018

Auditory Cortex

Auditory cortex learns to see!

54
[Roe et al., 1992]



Feature learning problem

* Given a 14x14 image patch x, can represent it using 196

real numbers. S

255
98
93
87
89
91
48

 Problem: Can we find a learn a better feature vector to
represent this?

9/16/2018 55



First stage of visual processing: V1

V1 is the first stage of visual processing in the brain.
Neurons in V1 typically modeled as edge detectors:

”»”

Neuron #1 of visual cortex Neuron #2 of visual cortex
(model) (model)

9/16/2018 56



Learning sensor representations

Sparse coding (Olshausen & Field,1996)

Input: Images x®, x@, ..., x(M (each in R"xN)

Learn: Dictionary of bases ¢,, ¢, ..., ¢, (also R"*"), so

that each input x can be approximately decomposed as:
Kk
X~ 2,2 ¢,

=1

S.t. aj’s are mostly zero (“sparse”)

9/16/2018 57



Sparse coding illustration

Natural Images Learned bases (¢; _ ¢g4): “Edges”

Test example

~ (.8 * + 0.3 * b,y T 0.5%
[a}, .., ag) = (0,0, ..., 0, 0.8, 0,.,00.3,0,..,0 0.5, 0]

(feature representation) 58




Sparse coding illustration

Represent as: [a,,=0.6, a,,=0.8, a5, = 0.4]

'
Ous 0,

Represent as: [a;=1.3, a,,=0.9, a,4 = 0.3]

¢29

* Method “invents” edge detection

« Automatically learns to represent an image in terms of the edges that
appear in it. Gives a more succinct, higher-level representation than the
raw pixels.

» Quantitatively similar to primary visual cortex (area V1) in brain. 59



Feature
detectors
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What features might you expect a good NN
to learn, when trained with data like this?

/////////
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A 1 9 9 . |l =75 T2
But what about position invariance ???

our example unit detectors were tied to
specific parts of the Image



successive layers can learn higher-level features ...

1 5 10 15 20 25

L LN ]
__-_-_ e

X E=

etc ...

detect lines in
Specific positions

Higher level detetors
( horizontal line,
“RHS vertical lune”
“upper loop”, etc...

9/16/2018 66



successive layers can learn higher-level features ...

1 5 10 15 20 25

L LN ]
__-_-_ e

X E=

etc ...

detect lines in
Specific positions

Higher level detetors
( horizontal line,
“RHS vertical lune”
“upper loop”, etc...

.o, WWhat does this unit detect?

67




object models

object parts
(combination
of edges)

Training set: Aligned
images of faces.

9/16/2018 68
[Honglak Lee]



New way to train multi-layer NNs...

i

9/16/2018 69




New way to train multi-layer NNs...

SEEEL

Train this layer first

9/16/2018
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New way to train multi-layer NNs...

S

Train this layer first

then this layer

9/16/2018 71



New way to train multi-layer NNs...

Ry

Train this layer first

then this layer

then this layer

9/16/2018
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New way to train multi-layer NNs...

R

Train this layer first

then this layer

then this laver
then this layer

9/16/2018
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New way to train multi-layer NNs...

R

Train this layer first

then this layer

then this laver

then this laver
9/16/2018 flna”y th|$ |ayer74



New way to train multi-layer NNs...

SEEEL

EACH of the (non-output) layers is trained to
be an autoencoder

Basically, it is forced to learn good
features that describe what comes from
9/16/2018 the previous layer 7
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Autoencoder

76
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Autoencoder
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Deep learning for Images

9/16/2018
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Convolutional Neural Network (CNN)

C3: f. maps 16@10x10
S4: f. maps 16@5x5

CS: layer e: jayer QUTPUT
20 g o

C1. feature maps

INPUT
303 6@28x28

S2:f. maps
6@14x14

R, ’ Full coanection - Gaussian
Convolutions Subsampling Convolutions  Subsampling Full connection

9/16/2018 79



Convolution

These are the network
parameters to be learned.

1|-1]-1
1(0(0]0]|0]1 1|1 | -1 | Filter 1
o|1|0|0|1]|0 PR
o|lo|1|1|0]|0
1/0[{0|0|1]0 111
ol1lolol1lo 1|1 | -1 | Filter2
o|lo|1|0|1]|0 111 ]-1

6 X 6 Image

Each filter detects a
small pattern (3 x 3).



. 1|-1]-1
Convolution 211 1| Filter 1
-11-11 1
stride=1
Dot
product
—_— 3 _1

OO |RJIO|O |k
olr|OojJOo|r|O
LR | OO, | OO
OO0 |oOo)— O |O
PR, |O|FR,|O
O OO0 (O |k

6 X 6 Image



Filter 1

<5 -
AR
|5
c
O
)
= BR)
— O
(@) o
> =
c 2
O
@)

6 X 6 Image

110/0(011/0

01,0010

0010|1210




Convolution

stride=1

6 X 6 Image

Filter 1



111 | -1
Convolution 201 1] Filter2
111 | -1
stride=1

6 X 6 Image

Two 4 x 4 images
Forming 2 x 4 x 4 matrix



Color image: RGB 3 channels

| I | | [ |
- AEIE! g -1I 1I -1I
=1-1|1|-1|Filter1|H-1] 1 |-1]|Filter2
1] -1]-1 1 1] -1]1|-1
Color image
I Tl Tl
11]/0|0]|0|0]1
Hol1]/0]0]|1]0
Holo|l1]1]0]0
LH1/0/0]|0]|1]0
Hol1/0]|0]|1]0
YHolol1]0]|1]0




Convolution v.s. Fully Connected

\\ y

v 9
Fi N 8

{ 1 \ £ 1 \

= e )
- Sy ™, d

b p”

5 .;"'/_ﬁ .
e A\ N 4 ¥, N
& ¢ ¢ ¢ )
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i 1 \ £ 1 \
o= =
o . 9 \ .
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t» B W= B )
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convolution

Fully-
connected

OO, |O|O|K
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Filter 1

X 6 Image

fewer parameters! 15 Y Only comnect o

16 inputs, not fully
: connected



16: Shared weights



Max Pooling

1|-1]-1 -1 -1
111 |-1| Filter1 -1 -1 | Filter 2
1]-1]1 -1 -1

3 -1 -3 -1 1 1 1 1

-3 1 0 -3 1 1l 2 1

-3 )| -3 0 1 1 -1 || -2 1

3 2 |1 -2 -1 -1 0 -4 3




Why Pooling?

* Subsampling pixels will not change the object

bird
bird

We can subsample the pixels to make image

W fewer parameters to characterize the image



A CNN compresses a fully
connected network in two ways

* Reducing number of connections
e Shared weights on the edges
* Max pooling further reduces the complexity



Max Pooling

New image
1(0(0]|0]|0]1 but smaller
o(1/0|0]|1]|0 ,
o|lo0|1]|1|0]0 -1 1
1/0(0|0|1]|0
o(1/0|0]|1]0 o ;
o|lo0|1]|0|1]0

2 X 2 Image

6 X 6 Image :

Each filter

IS a channel



Flattening

LT A
AN




Convolutional Neural Network (CNN)

 Compared to standard feedforward neural networks with
similarly-sized layers,

= CNNs have much fewer connections and parameters
* and so they are easier to train,

= while their theoretically-best performance is likely to be
only slightly worse.

9/16/2018 94



Frequency

CNN in speech recognition

1 The filters move In the
CNN frequency direction.

\-'.'.’ -3t
L)

-

mage Time
Spectrogram



Challenges

* How to decide the number of hidden layers and
nodes?

* Choosing suitable deep learning architecture for a
given data

* Choosing suitable error function

9/16/2018
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Thanks
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