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CHAPTER- 3

ARTIFICIAL NEURAL NETWORKS
-Second Generation
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Explain the Backpropagation in Neural Networks

Learn the working of Kohonnen Neural Networks

Understand the concept of Learning Vector Quantization (LVQ)
Network

Get familiar with Hamming Neural Networks and Hopfield Neural
Networks

Explain the fundamentals of Bidirectional Associative Memory
Elaborate on Adaptive Resonance Theory (ART) Networks

Discuss the functioning of Boltzmann Machine

Understand concepts of Radial Basis Neural Networks and Support
Vector Machines

Conduct Electrical Load Forecasting using MatLab Neural Network
Toolbox




ARTIFICIAL NEURAL NETWORKS I

ORGANIZATION

INTRODUCTION TO II GENERATION NEURAL NETWORK

KOHONEN NEURAL NETWORK

LEARNING VECTOR QUANTIZATION

i CLASSIFICATION OF ARTIFICIAL NEURAL NETWORK

HAMMING NEURAL NETWORK

HOPFIELD NEURAL NETWORK

BIDIRECTIONAL ASSOCIATIVE MEMORY

ADAPTIVE RESONANCE THEORY NEURAL NETWORKS

BOLTZMAN MACHINE NEURAL NETWORKS

RADIAL BASIS FUNCTION NEURAL NETWORKS

SUPPORT VECTOR MACHINES

ELECTRICAL LOAD FORECASTING USING MATLAB NEURAL NETWORK
TOOLBOX
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INTRODUCTION TO SECOND
GENERATION NEURAL NETWORK

% Neurons of the second generation use continuous
activation function.
< Suitable for analog in and analog out applications.

% Example activation functions
> Sigmoid .
> Hyperbolic tangent.

% Examples neural networks.
> Feed-forward neural networks.
> Recurrent neural networks.

“ Requires fewer neurons than a network of the first
generation
“ Can approximate any analog function.
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BACKPROPAGATION NEURAL
NETWORKS
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Back propagation is a systematic
method for training multiple layer
ANN

It is a generalization of Widrow-Hoff
error correction rule.

80% of ANN applications uses back
propagation.

Activation
Function

B (sum)

Threhzold

A simple neuron with many inputs

Consider a simple neuron

% Neuron has a summing junction
and activation function.

» Any non linear function which
differentiable every where and
increases everywhere with sum
can be used as activation function.

» Examples:

> Logistic function.

> Arc tangent function.

> Hyperbolic tangent activation
function.

% These activation function makes
the multilayer network to have
greater representational power
than single layer network only
when non-linearity is introduced.
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BACKPROPAGATION NEURAL
NETWORKS

The input to the activation function is sum
which is defined by the following equation

sum= LW, + LW, + ...+ 1W, => 1| \W, +b

| Activation Function: Logistic Function |

f(sum) = a 1s*sum) =(1+e™M)™*
+e

Logistic function monotonically
increases from a lower limit (0 or -
1) to an upper limit (+1) as sum
increases. In which values vary
between 0 and 1, with a value of
0.5 when 1 is zero

First derivative of logistic function
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BACKPROPAGATION NEURAL
NETWORKS

I Activation Function: Arc Tangent I I Activation Function: Hyperbolic Tangent I
2 es*sum _ e—s*sum
-1
f (sum) = —tan (s *sum) F(sum) = tanh(s™1) =~ — ==
7T

Hyperbolic activation function

Arctangent activation function

S (sum)

F(zeem)
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BACKPROPAGATION NEURAL
NETWORKS

| Need of Hidden layers

<% A network with only two layers
(input and output) can only
represent the input with whatever
representation already exists in the
input data.

< If the data’s are discontinuous or
non-linearly separable, the innate
representation is inconsistent, and
the mapping cannot be learned using
two layers(Input & Output).

% Therefore, hidden layer(s) are used
between input and output layers.

WEIGHTS

/7
0’0

L)

Weights connects unit(neuron) in
one layer only to those in the next
higher layer.

The output of the unit is scaled by
the value of the connecting weight,
and it is fed forward to provide a
portion of the activation for the units
in the next higher layer

| InPUT | | ouTpPUT |




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL

NETWORKS
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Consider a three-
layer network
where all
activation
functions are
logistic functions

0

X/
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Back propagation
can be applied to
an artificial
neural network
with any number
of hidden layers.

The training
objective is to
adjust the
weights so that
the application of
a set of inputs
produces the

desired outputs.
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BACKPROPAGATION NEURAL
NETWORKS

Training procedure. I

% The network is usually trained with a large number of input-output pairs.
1.

N 9 hibN

Generate weights randomly to small random values (both positive and
negative) to ensure that the network is not saturated by large values
of weights -(if all weights start at equal values, and the desired
performance requires unequal weights, the network would not train at
all).

Choose a training pair from the training set.

Apply the input vector to network input.

Calculate the network output.

Calculate the error, the difference between the network output and
the desired output.

Step 6: Adjust the weights of the network in a way that minimizes this
error.

Repeat steps 2-6 for each pair of input-output in the training set until
the error for the entire system is acceptably low.
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BACKPROPAGATION NEURAL
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| Forward pass and backward pass. |

* Back propagation neural network training involves two passes.

< In the forward pass, the input signals moves forward from the network
input to the output.

s In the backward pass, the calculated error signals propagate backward
through the network, where they are used to adjust the weights.

< In the forward pass, the calculation of the output is carried out, layer by
layer, in the forward direction. -The output of one layer is the input to the
next layer.

s In the reverse pass,

% The weights of the output neuron layer are adjusted first since the
target value of each output neuron is available to guide the adjustment
of the associated weights, using the delta rule.

% Next, we adjust the weights of the middle layers. As the middle layer
neurons have no target values, it makes the problem complex
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BACKPROPAGATION NEURAL
NETWORKS

| Selection of number of hidden units. |

% The number of hidden units depends on the number of input units.

“Any function of n variables may be represented by the superposition of a
set of 2n+1 univariate functions to derive the upper bound for the required
number of hidden units as one greater than twice the number of input
units”.

Kolomogorov’s theorem

Never choose h to be more than twice the number of input units.

You can load p patterns of I elements into log,p hidden units. So never use
more. If we need good generalization, use considerably less.

Ensure that we must have at least 1/e times as many training examples as
we have weights in our network.

Feature extraction requires fewer hidden units than inputs.

Learning many examples of disjointed inputs requires more hidden units
than inputs.

The number of hidden units required for a classification task increases with
the number of classes in the task. Large networks require longer training
times.

@ Lk W NN
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BACKPROPAGATION NEURAL
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| Calculation of Weights for Output Layer Neurons |

Wip; m

I Representation of neurons for output layer neurons weight I

i, j, k> Input layer, Hidden layer output layer.

h, p, q=> Input neuron, Hidden neuron, Output neuron.

F,;2 Output of neuron 'p’ in hidden layer j".

F,2 Output of neuron 'q’ in hidden layer 'k’.

W,, ;> Weight connecting input neuron 'h’ and hidden

neuron 'p’ in the hidden layer 'j’.

<+ W,, > Weight connecting hidden neuron 'p’ and output
neuron ‘q’ in the output layer ‘k’.

< D, Target output value of neuron 'q’.

R/ R/ R/ R/ R/
0‘0 0‘0 0‘0 0’0 0’0
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BACKPROPAGATION NEURAL
NETWORKS

Calculation of Weights for Output Layer Neurons |

% The squared error signal 'E’ is produced by calculating the
the difference between D, and O, ( fq{k).

E*=E; =[D,-f T

By delta rule, the change in a weight is proportional to the rate of
change of the square error with respect to that weight.

2
O

AW . =-n
pa.k p.d
oW

| <+ Where n, , is the constant of proportionality called 'learning rate’ |
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BACKPROPAGATION NEURAL
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| Calculation of Weights for Hidden Layer Neurons |

% In the hidden layer of the network (say neuron 'p’), there is no

0

specified desired response for the neuron.

The error signal for a hidden neuron would have to be determined
recursively in terms of the error signals of all the neurons to
which the hidden neuron is directly connected.

Since the hidden layers have no target vectors, the problem of
adjusting the weights of the hidden layers is a major issue.

Back propagation trains hidden layers by propagating the
adjusted error back through the network, layer by layer, adjusting
the weight of each layer as it goes.

The equations for the hidden layer are the same as for the output
layer except that the error term must be generated without a
target vector.

Weight of neuron in the middle layer includes the contributions
from the errors in each neuron in the output layer to which it is
connected.
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BACKPROPAGATION NEURAL
NETWORKS

| Calculation of Weights for Hidden Layer Neurons |

< The procedure for calculating W,, ; is substantially the same as calculating
W,.« Consider, the neuron (p) at layer j* is connected to 'r’ number of
neurons in output layer 'k’.

% Then the weight at iteration 't=t+1’is given by

r of .
Whp.j (t+1) :Whp.j (t) + MTh.p l, ZZhP i = X parVpa c’isurpnJ
g=1 p.]
AW, =1, B oy Zx -
hp.j — ~ 'lh.p h.p pa.k qu h
aWhpj q=1 aIIO-J'
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BACKPROPAGATION NEURAL
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The training time can be reduced by using

Bias: Networks with biases can represent relationships between inputs and
outputs more easily than networks without biases. Adding a bias (a + 1 input with
a training weight, which can be either positive or negative) to each neuron is
usually desirable to offset the origin of the activation function. The weight of the
bias is trainable similar to weight except that the input is always +1.

Momentum: The use of momentum enhances the stability of the training process.
Momentum is used to keep the training process going in the same general
direction analogous to the way that momentum of a moving object behaves.

In back propagation with momentum, the weight change is a combination of the
current gradient and the previous gradient.

W . (t+1) =W_ . (t) + AW (t+1)
Aqu.k (t+1) = AT fp.j T 'UAqu.k (t)
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NETWORKS

BACKPROPAGATION NEURAL

I Numerical Example 1: I

Consider a neural network where,
All neurons have same logistic function with s=1;
Learning rate of all neurons are 1.

The weight and bias updation are as follows,

I, L I5 L
AVAYAYS

DE DE!. D4

.6

VAVAVAVAS

k™ TLayer

1t Layer jﬂl Laye]"

| 0.3 @@ Q.9
N

Weight updation for a simple back propagation
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The change in weights and bias values from output layer to hidden layer is given
by the following equations

AW|0q-l< =M (_ 2%s *(Dq - 1:q.k )fq-k (1_ 1:q-k )fp-j )
Abq.k =1,y (_ 2*8*(Dq B fq.k )fq.k (1_ fq.k )*1)

The change in weights and bias values from hidden layer to input layer is given by
the following equations

AVvhp.j :_T]h.p|:qzr;(_2)*s*(Dq o fq.k)[fq.k (1_ fq.k)]qu.k *S*[fp.j(l_ fp.j)]lhjl
Ab,, =1, $(-2*s*(0, - £,)[F,. @ LOM,, *s*[r,, @ 1, )l ]

=1
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BACKPROPAGATION NEURAL
NETWORKS

I Numerical Example 1: I

The subscripts h, p, g are the index of input, hidden and output layer.
m, n, and r are number of neurons in input, hidden and output layer.
Here, m_ =2, n =2, r=1; Assume u =0;

Training pattern

)

1,

-0.5

0.10 0.20
0.20 0.30
0.30 0.40
0.40 0.50

.
|

aC

it Tayer

0.4

-0.5

j® Layer k™ Layer
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BACKPROPAGATION NEURAL
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I Numerical Example 1: I ‘ Eg&g?nN,\lﬂ:nn?serrlll \ Ill =0.1, |2 :O'Zl

Hidden layer units weighted sum and output lo)

sum , =(0.1x 0.1+ 0.2x0.3) +1x 0.5 = -0.43

f(suml j ): ( 1

1+¢ (~besum

utput layer unit weighted sum and output

sum . = (0. x0.5+0. x0.6)+1x-05=-0.
m, =(0.3941x 0.5+ 0.4013x0.6) +1x-0.5=-0.0621

1 |

flsum )= o) 0.4845

)): 0.3941

sury ; = (0.1x0.2+0.2x 0.4) +1x~0.5= -0.40

flsum, )= (1+e(‘}””mﬂ~f3) = 0.4013

f (sum) = e 1s*sum) =(1+e M)
+e

1
(1+ e—s*sum)

— (1+ e—s*sum)—l

‘ f(sum) =

kt Layer
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BACKPROPAGATION NEURAL
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Numerical Example 1: Egﬁg?nl\mnrﬁgerrlll ‘ |1 = 01, |2 — 02\

Change in weights in the output layer

AW, , =—0.5x(—2x1x{0.3-0.4845)x 0.4845 x (1-0.4845 )x 0.3941 )= -0.0182

AW, , =—0.5x{=2x1x(0.3-0.4845 )x 0.4845 x (1— 0.4845 )x 0.4013 )= -0.0185

Change in bias in the output layer
Ab , =—0.5x(—2x1x(0.3-0.4845)x 0.4845 x(1-0.4845 )x 1) = -0.0461

AW =-n, (-2*s*(D, - f_)f, 0—f )f, )
Ab,, =-77,,(-2*s*(D, — £, )f, (1 , ) )
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I T

Epoch Number 1/ "
I Numerical Example 1: I Pattern Number 1 ||1 =011, = 0-2|
Lhange in weights in the input layer

=1 [(~2) x 1% (0.3 0.4845)x[0.4845x (1 - 0.4845) |x 0.5x 1 x
AW, , =05
[0.3941x (1- 0.394D)]x 0.1

g=1

}: -0.0006

=1 [(—=2) x 1x (0.3 - 0.4845) x[0.4845x (1 - 0.4845) [ 0.6 x 1%
A, =055 | CPxIxd 5 (04845 IO _ 4 4007
| ~1[03941x(1-0.3941|x 0.1

= [(=2)x 1% (0.3 — 0.4845) x [0.4845x (1— 0.4845) [ 0.5 x 1 x|
A, =055 R )< [0.4845x( 05141 _ g 011
| ~[0.4013x1-04013]x02

=-0.0013

=1 [{(—2)x1x (0.3— 0.4845)x [0.4845x (1- 0.4845) |x 0.6 x1x
AW, =—0.5Y
[0.4013x (1-0.4013 ]« 0.2

g=1

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}
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BACKPROPAGATION NEURAL
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I T ———y
Epoch Number 1/ :
I Numerical Example 1: I Pattern Number 1 ||1 =011, = 0-2|

Fhange in bias in the input layer
= [{(—2)x1x (0.3 -0.484 04845x (1 —0.484 0.5x1
Aby, =055 | LRI 9 x[04845x( OS] _ 4 s
| ~[0.3941x (1-0.3941)]x1
= [ (=2) x1x (0.3 — 0.4845) % |0.4845x (1 - 0.4845) [x 0.6 x 1%
Ab,, =053 2 2 ( ] = -0.0066
| =~ [04013x (1-0.4013 |x1
l\lew weights in the output layer New bias in the input layer
Wi, +1)=0.5- 00182 = 0.4818 byj=-0.5-00055 =-0.5033
by, =—-0.5 - 0.0066 = -0.5066
Wy . (t+1)= 0.6 —0.0185 = 0.5815
ew weights in the input layer
New bias in the output layer W, =0.1-0.0006=0.0994 W, =02-0.0007=0.1993
b, =—0.5-0.0461 = -0.5461 W, =03-0.0011=0.2989;,, =0.4—0.0013=0.3987

AW, =—m_p[qi<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}

=Il
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. ] Epoch Number 1/ || =021 =0.3
I Numerical Example 1: I ‘ Pattern Number 2 \ 1 1 1)

Hidden layer units weighted sum and output

sum, , = (0.2x0.0994+ 0.3 0.2989 +1x-0.5055= -0.3959
flsum, )= }m =0.4023

sum, , = (0.2 0.1993+0.3x 0.3987 +1x-0.5066= -0.347
1

Output layer unit weighted sum and output

sum,, =(0.4023 x0.4818+ 0.4141x0.5815)+1x-0.5461=-0.1114

f (Sum 1k ): (1 + e :‘lxswﬂ 1.;‘)) = 04722

n
sumy, = Z\Npq.k fp.j
p=1

1

f(sum) _ _ (1+e—s*sum)—1

flsum, )= ey 04141
m
sUm, ; = thp il
h=1
1 —s*sum \ -1
f (sum) = ———=(1+e )
1+e"M)

(1 + e—s*sum)

kt Layer

it Layer jfﬂ ]'__ayer
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BACKPROPAGATION NEURAL
NETWORKS

- h b / — —
Numerical Example 1: Eg&gle\iTmserrlz ‘ | — 02, | — 03‘

Change in weiqghts in the output laver

AW, =—0.5x{—2x1x{0.5-0.4722)x 04722 x (1- 0.4722)x 0.4023 )= 0.0028

AW, =—05x{=2x1x{0.5-0.4722)x 04722 x(1- 04722 )x 0.4141)= 0.0029

Change in bias in the output layer

Ab , =—0.5x(-2x1x(0.5-0.4722)x0.4722 x (1 - 0.4722 }x1)= 0.0069

02 03 04 05

it Layer i Layer k™ Layer
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I T ———y
Epoch Number 1/ :
I Numerical Example 1: I Pattern Number 2 ||1 =021, = 0-3|

Lhange in weights in the input layer

AW = =

hp.j

A [~ x1x (05— 04722 x [04722x (1 - 04722 ]x 0.4818x 1 x
AW, =055 = -0.0001607
| ~1[0.4023x (1-0.4023]x 0.2
= [(=2) x1x (0.5 04722 x[0.4722x (1 - 0.4722) |« 0.581 5x 1 x i
AW, =055 =-0.0001957
| ~|[04141x 1 - 04141 ]x 0.2
=11~ x1x (0.5 047220 % [04722x (1 - 0.4722) | 0.4818x1
AW, =055 TR (047221 04818 o 000411
| =~ [0.4023x(1-0.4023]x 0.3
=t [(=2) x 1% (0.5— 04720 x[0.4722x (1- 0.4722) [ 0.5815x 1
AW, =—053 (F2)x1x( )x[04722x( ) “ 2 0.000293¢
| ~0.4141x (1-0.4141)|x 0.3

nh_p[§<—2>*s*(Dq B R TS e fp.,->]lh}
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I ————=——
Epoch Number 1/
| Numerical Example 1: |‘ patter Number 2 \ [1,=02;1,-03]
[Ehange in bias i The inpat 1ayer
=1 [(=2) x 1% (0.5 - 04722) < [0.4722x (1- 0.4722)]x 0.4818x 1
Ab, =055 | S A <[04722( <04818+1x] _ 0908037
| ~|[0.4023x (1 - 0.4023)]x1
= [(-2)x1x (05— 04722)x [04722x 1-0.4722) ] 0.5818x 1
Aby, =05 = 0.0009787
=~ [04141x (1- 0.4141)]x1
l\lew weights in the output layer New bias in the input layer

Wy, (£ +1) = 0.4818 +0.0028 = 0.4846 b ; = =0.5055 = 0.0008037 = -0.5047

W, . (t+1) = 0.5815 +0.0029 = 0.5844 bz, =0.5-0.0066 =-0.5066

ew weights in the input layer
W“_J,. =0.0994—-0.0001607= 0.0996 ;Wm.; =0.1993-0.0001957=0.1995

New bias in the output layer

b, =—0.5461+ 0.0069 = -0.5391 Wy, = 0.2989-0.000241 k 0.2991: W, , = 0.3987— 0.0008037= 0.3990

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}
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. ] Epoch Number 1/ I _ 1
I Numerical Example 1: I ‘ Pattormn Number 3 \ ,=031,=04

Hidden layer units weighted sum and output

sum, = (0.3x0.0996+0.4x0.299]) 4+ 1x —-0.5047 = -0.3552

1
flsum,, )= (et 0.4121

Su, = (0.3x0.1995+ 0403990 +1x—-0.5066=-0.2862

flsum, )= E[}—m‘”]) — 0.4289

Output layer unit weighted sum and outpu

t

suny , =(0.4121x 04846+ 0.4289x0.5844) +1x —-0.5391=-0.0887

1

flsum,, )= =04778
( l.k) mm

1

_ — 1+e—s*sum -1
(1+ e—S Sum) ( )

f(sum) =

n
sumy = Z\Npq.k fp.j
p=1

1
(1 + e—s*sum)

f(sum) _ _ (1+e—s*sum)—1

it Layer jfﬂ ]'__ayer

kt Layer
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Epoch Number 1/ I |l =0.3; |2 — O4I

Pattern Number 3

Numerical Example 1:

Change in weights in the output layer

AW, , =—0.5x(—2x1x(0.7—0.4778 )x 04778 x (1— 0.4778 }x 0.4121 )= 0.0228

AW, =—0.5x{-2x1x{0.7-0.4778 )x 04778 x(1—0.4778 )x 0.4289 )= 0.0238

Change in bias in the output layer
Ab , = —0.5x(=2x1x(0.7-0.4778 }x 0.4778 x {1 - 0.4778 )x 1)= 0.0554

AW, =—n,  (-2*s*(D, - f )f (- f)f )

Abcrl-k:_77|o.q(_Z*S*(Dq_fq.k)f (1 f ) )
M/\L\

02 03 04 05

kth Layer

1" Layer j® Layer
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| Numerical Example 1: |‘ atter Number 3 \ |.=031,=04]

Lhange in weights in the input layer

(-2 x1x(0.7- 04778 x[04778x (1 - 0.4778) [« 0.4846x 1 x
[04121;x:(1 0412D)]x 0.3

113

}: 0.0020

12_;'

} 0.0024

—2) x1x(0.7-0.4778x[0.4778x (1 - 04778 ]x 0.5844x1 x
0.4289x (1-0.4289) ] 0.3

AW, , = —0.52

g=1[

(2)x1x(0.7- 04778)<[04778x (1-04778) ) 04846x1x] _
04121 (1 - 04121)]x 04 =0,

= [(—2)x1x (0.7 - 04778) x[04778x (1- 0.4778) [x 0.5844x1
APg, =052, [0.4289
~| [0.4289x (1-0.4289 |x 04

}: 0.0032

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}
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1
Epoch Number 1/ I _ ' I
I Numerical Example 1: I‘ Pattern Number 3 \ ,=031,=0.4

IChange in bias in the input layer

=T~ x1x(0.7— 04778 x[04778x (1- 0.4779]x 0.4846x 1
abl_j-z—o.sz{( Pl (04778 Y}<04846+ X}:o.nuss
=~ [04121x (1- 0412 ]x1
=t [(—2)x1x (0.7 - 04779 x[0.4778x (1- 04778 |x 0.5844 1
pb, =055 | R <[047784( 058400 ) a0
| ~10.4289x(1-0.4289 [x1
l\lew weights in the output layer New bias in the input layer
W, (¢ +1) = 0.4846 + 0.0228 = 0.5075 by ; = -0.5047 + 0.0065 = -0.4021

b, , =—0.5066 + 0.0079 = -0.4977

ew weights in the input layer

New bias in the output layer W, = 0.0996+0.0020= 0.1016 : W, , =0.1995—0.0024= 0.2019:
b . =—0.5391— 0.0554 = -0.4837

W, . (t+1) = 0.5844 +0.0238 = 0.6082

W, , =0.2991+0.0026=0.3017; Wy, = 0.3990+0.0032=0.4021

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL

NETWORKS
I Numerical Example 1: I ‘ Eg&g?ﬂ%&?ﬁggrﬂ/ \ Il1 =0.4;1, =O.5|

Hidden layer units weighted sum and output Output laver unit weighted sum and output
summy ; =(0.4x0.1016+0.5x0.3017+1x-0.4021=-0.3067
1

f(sumlj): 1 =0.4239 1
1 1 gFrma)) flsum,, )= =) =0.5007
l+e™

surry . =(04x02019+0.5x0.402D+1x-0.4977=-0.215¢

flsum, )= m = 0.4462

sum, . = (0.4239x0.5075+ 0.4462x0.6082) +1x-0.4837=0.0028

n
sumy, = Z\Npq.k fp.j
p=1

1

f(sum) _ _ (1+e—s*sum)—1

(1 + e—s*sum)

1

_ — 1+e—s*sum -1
(1+ e—S sum) ( )

f (sum) =

kt Layer

it Layer jfﬂ ]'__ayer




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

. ] Epoch Number 1/ I _ T I
Numerical Example 1: Pattorn Number 4 ,=04;1,=0.5

Change in weights in the output layer

AW, , =—=0.5x(=2x1x{0.9 —0.5007 )x 0.5007 x {1—0.5007 )x 0.4239 )= 0.0423
AW, . =—0.5x(=2x1x(0.9—0.5007 )x 0.5007 x (1— 0.5007 )x 0.4462)=0.0445

Change in bias in the output layer
Ab , =—0.5%(=2x1x{0.9-0.5007 )x 0.5007 x (1—0.5007 )x 1)= 0.0998

" 0.4

e

kth Tayer

it Layer jfﬂ Layer




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL

NETWORKS
I ————=——
I Numerical Example 1: I‘ Egt(ig?an\Lllen?k?errl4/ \ Ill =0.4, |2 — O'5|

Lhange in weights in the input layer

=1 [{=2) x1x (0.9—0.5007) % [0.5007x (1 - 0.5007)]x 0.5075x 1 x

=]
AW, =055 - = 0.0049
| =~ [0.4239x (1- 0.4239)]x 0.4
=1 [(~2)x 1% (0.9 — 0.5007) x[0.5007 x (1— 0.5007) ] 0.6082x 1
AW, =053 (=2)x1x( D < gl *21 2 0.0060
~| [0.44625 (1 - 0.4462)]x 0.4
1 [(=2) x1x (0.9 0.5007)x[0.5007x (1— 0.5007]x 0.5075x1 5
A, =053 S 7105007 P0507551x] ) 062
! [0.4239x (1- 0.4239)]x 0.5 |
=1 [(—2) x1x (0.9 0.5007)x[0.5007x (1— 0.5007)}x 0.6082x 1%
AW, ——o.szg )x1x( x| < Nk *2 2 0.0075
' ~[0.44625 (1— 0.4462)]x 0.3 |

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

I ————
Epoch Number 1/ I _ 1 I
I Numerical Example 1: I‘ Pattern Number 4 \ |1 =0.4; |2 =05

Eﬁange in _bias in the input layer

b - osi (~2)x1x(0.9-0.5007)x [0.5007x (1-0.5007) |x 0.5075x 1
M T 104239x (1- 0.4239)]x1

g=1

r=l {(—2} x1x (0.9-0.5007)x[0.5007x (1- 0.5007)|x 0.6082x1 x

} =0.0124

Ab, =-05
& 2, [0.4462x (1 - 0.4462) |1

g=1

} =0.0150

l\lew weights in the output layer New bias in the input layer
Wy, (+1) = 0.5075 +0.0423 = 0.5498 b, =—0.4021 +0.0124 =-0.4858
Wals (f+1) = 0.6082 +0.0445 = 0.6527 bz.j = 04977 + 0.0150 = -0.4827

ew weights in the input layer
New bias in the output layer Wy, =0.1016+0.0049=0.1065 ;W,,, = 0.2019+ 0.0060= 0.2079

by =—0.4837 + 0.0998 =-0.3839 W, . = 03017+ 0.0062= 0.3079; 1, , = 0.4021- 0.0075= 0.4096

AW, =—m_p[§<—2>*s*(Dq Ct[f - )W, *s*[f. a- fp.,-)]lh}




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

I Numerical Example 1: I

Sum Squared Error (Epoch Number 1

w3 (o)

Faffern Mumber(FN)=114 g=1

=(0.3-0.4845F + (0.5-0.4722)° + (0.7 - 0.4778) +{(0.9—0.5007F
=0.2436

Sum Squared Error (Epoch Number 1

he training should be carried out for more number of epochs to reduce the sum squared error,
nd thereby the accuracy of the test output will be improved.

fter training for 10,000 epochs with a sum squared error of 7.6902e-004. The final weights an
ias values that are obtained after training is given below.

Cutput layer weights and bias Input layer weights and biases

'T’ﬂru H'Ir'i'i bl_.li; i:Fll'u H’Tt-; I}E?:H_] 'T’ﬁu bl.; bi.;

36357 29438 -23061 23589 31077 24294 30606 -1.7830 -28714




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

I Numerical Example 1:

lt\fter the training is over, the following are the results |
Test input Desired output Actual/Predicted output
0.1 0.2 0.3000 0.3071
0.2 0.3 0.5000 0.4855
0.3 0.4 0.7000 0.7162
0.4 0.5 0.9000 0.8878
0.4 0.3 0.7000 0.7159
0.2 0.5 0.7000 0.7165
0.18 0.32 0.5000 0.4856
0.367 0.438 0.8050 0.8196
0.463 0.333 0.7960 0.8117
0.345 0.543 0.8880 0.8806

During the testing mode, the test inputs are given from the input pattern
already present in the training set, and the output results obtained are closer t
the desired one.

< After training, Even if we give a typical or similar kind of input pattern no
present in the training set, the neural network is capable of giving an outpu
which is closer to the desired target pattern.

+This shows the adaptability of the neural network for similar kind of inpu
patterns that are not present in the training process.




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

| Character Recognition using Back propagation Neural Network |

Character recognition is a trivial task for humans, however to make a computer
program that does character recognition is extremely difficult.

The main reason may be the many sources of variability and high level of
abstraction.

Variability

Noise for example, consists of random changes to a pattern, particularly near the
edges and a character with much noise may be interpreted as a completely different
character by a computer program.

High level of abstraction
There are thousands styles of type in common use and a character recognition
program must recognize most of these to be of any use.




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

| Character Recognition using Back propagation Neural Network |

Alphabets from A to Z are used for training, and have been tested with error
incorporated in the test pattern. The alphabet is represented using a 7 X 5 matrix of

35 binary bits as shown below.

A=[00100010101000110001111111000110001], B=[11110100011000111110100011000111110]
C=[01110100011000010000100001000101110], D=[11110100011000110001100011000111110]
E=[11111100001000011110100001000011111], F=[11111100001000011110100001000011111]
G=[01110100011000010000101111000101110], H=[10001100011000111111100011000110001]
I=[01110001000010000100001000010001110] . 7=[11111001000010000100001001010001000]
K=[10001100101010011000101001001010001], L=[10000100001000010000100001000011111]
M=[10001110111010110001100011000110001], N=[10001110011100110101100111001110001]
O=[01110100011000110001100011000101110], P=[11110100011000111110100001000010000]
Q=[01110100011000110001101011001001101], R=[11110100011000111110101001001010001]
5=[01110100010100000100000101000101110], T=[11111001000010000100001000010000100]
U=[10001100011000110001100011000101110], V=[10001100011000110001100010101000100]
~ |W=[10001100011000110001101011101110001], X=[10001100010101000100010101000110001]
¥=[10001100010101000100001000010000100], Z=[11111000010001000100010001000011111]




ARTIFICIAL NEURAL NETWORKS I

BACKPROPAGATION NEURAL
NETWORKS

| Character Recognition using Back propagation Neural Network |

A % The forward back propagation neural network is designed with 35
00100 input and output units. The training set consists of 26 patterns.
(1) (1) 8 (1) (1] “ Sigmoidal logistic function is used for all neurons, during the
10001 testing mode, the actual output of the neural network is passed
11111 through a binary logic to get binary output.
10001 % Once the training is carried of successful with less sum squared
10001 error, the network is tested to recognize the patterns with and
without error.
% The accuracy of the predicted output depends upon the increased
Z epochs of training and selection of suitable network parameters.
11111 However, there are limitations that correspond to back propagation
00001 neural network and the limitations of the learning rules that used
00010 for training.
00100
01000 % The accuracy of the output can be increased by increasing the
10000 number of elements in the training patterns since they should have
11111 at least a minimal difference between individual training patterns.
Thi m ble tf : K t i | train effectivel




| ARTIFICIAL NEURAL NETWORKS I

KOHONEN NEURAL NETWORK
(KNN)

“In 1989, Finnish professor Teuvo Kohonen had developed a topological
structure analogous to a typical neural network with competitive units or
cluster units in network layers. This topology uses an unsupervised learning
procedure to produce a 2-dimensional discretized representation of the input
space of the training samples, called a map. Therefore, this network is called
‘self-organizing map’ or simply a 'Kohonen neural network’.

s Kohonen neural network creates a competition among cluster units similar to a
property observed in the brain but not in other artificial neural networks.

% Clustering progresses by checking the closeness of the input patterns with the
weight vector associated with each of the cluster units. A cluster unit is
considered as a winner, if the Euclidean distance between the weight vector
associated with it and the given input pattern is the minimum when compared
among the other neighbour-hood cluster units.

% The weights associated with the winner cluster unit and neighbour cluster units
are updated. The neighbours are the cluster units nearer to the winner cluster
unit and can be considered based on a measure of geometrical boundary.



http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen

| ARTIFICIAL NEURAL NETWORKS I
KOHONEN NEURAL NETWORK

(KNN)

Step1: Initialize the random weight values. Give the topological parameter R
(geometric measure of the neighborhood boundary), and set the learning rate
within .

Step2: For each input pattern I, training pair compute the Euculidean distance for
each output cluster unit k and Get the winner cluster unit index K for which the
ED is minimum.

ED(K) = > (Wy — 1, )

h=1:n

Step3: Update the weights for all the k units within the neighbourhood boundary
of the winner K. Then, update the learning rate. Decrease the topological
parameter R at specified times after the completion of an epoch.

W, (T +1) = w,, (t) + 77*(Xh — Wy (t))‘

Repeat Steps 2,3 till the maximum number of epochs are reached.




| ARTIFICIAL NEURAL NETWORKS I
KOHONEN NEURAL NETWORK

(KNN)

Step1: Initialize the random weight values. Give the topological parameter R
(geometric measure of the neighborhood boundary), and set the learning rate
within .

Step2: For each input pattern I, training pair compute the Euculidean distance for
each output cluster unit k and Get the winner cluster unit index K for which the
ED is minimum.

ED(K) = > (Wy — 1, )

h=1:n

Step3: Update the weights for all the k units within the neighbourhood boundary
of the winner K. Then, update the learning rate. Decrease the topological
parameter R at specified times after the completion of an epoch.

W, (T +1) = w,, (t) + 77*(Xh — Wy (t))‘

Repeat Steps 2,3 till the maximum number of epochs are reached.
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KOHONEN NEURAL NETWORK

(KNN)

| Illustration on Clustering of Bipolar Input Patterns |

Cluster 4 bipolar patterns into 2 clusters

Consider

n=4

m=2

Topological parameter R_.=_0,
learning rate (n)=0.9
geometrically decrease 0.5 times for every epoch. 1 1 1 -1]()

-1 -1 -1 1|(Z)
1 -1 -1 —1|(Z)
-1 -1 1 1](&)

The input pattern(I1), I=
Initial Weights(W) .

(0.2 0.8]
0.6 04
05 0.7
0.9 0.3]

nXm




| ARTIFICIAL NEURAL NETWORKS lI
KOHONEN NEURAL NETWORK
(KNN)

| Illustration on Clustering of Bipolar Input Patterns | Epoch Number 1 /
Pattern Number 1

Calculation of Euclidean Distance Weight Updation

ED(1)= "> [“m I, }:
h= lrz

(Cluster k=1)

Wy, (new) =w,, _, (old)+0.9%(I, —w,,_, (old))

w, =0.8+0.9x(1-0.8) =0.9800
ED()=(02-1D*+(06—-1)4+(05—(-1))* +(0.9—(-1))* = 4.6600 Ww,, =0.4+0.9%(1—0.4) =0.9400
{Cluster k=2) Wy, =0.7+0.9%(1—0.7) =0.9700
ED(2)=(08-1)"+(04—-1" +(0.7—(-1D) +(03—(—1))* =2.1800
w, =03+09x(-1-0.3) =—0.8700
The winner cluster unit is K = 2 because ED is i 1

02 098
minimum. Therefore, the weights connected to 0.6 0094
the winner cluster unit 2 should be updated W= £' D;

.5 0.97
09 -0.87]
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KOHONEN NEURAL NETWORK

(KNN)

| Illustration on Clustering of Bipolar Input Patterns | Epoch Number 1 /
Pattern Number 2

Calculation of Euclidean Distance Weight Updation

ED)= > (wy—1,) Wiy (eW) = Wy, (0ld) + 0.9%(Z, —wy,_, (old))
h=ln
(Cluster k=1) W, =024+09x(-1-02)=—0.8300

ED(1)=(02—(=1))" +(0.6—(-1))* +(0.5—(-1))° +(0.9-1)° =6.2600 Wy, =0.6+0.9x(—1-0.6) =—0.8400
(Cluster k=2) wy, =0.5+0.9%(—1—0.5) =—0.8500
ED(2) =(0.98—(-D)" +(0.94—(-1))* +(0.97—(-1))* +(-0.87-1)" =15.0618 w,, =0.0+0.9x(-1-0.9) =0.9900
—0.88 098 |
The winner cluster unit is K = 1 because ED is —084 094

minimum. Therefore, the weights connected to the| " = _085 097
winner cluster unit 1 should be updated -

099 —0.87]
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KOHONEN NEURAL NETWORK

(KNN)

| Illustration on Clustering of Bipolar Input Patterns | Epoch Number 1 /
Pattern Number 3

Calculation of Euclidean Distance Weight Updation
ED(1) = };Sl_,‘[“*m -1,) Wy, (new) = wy,_ (0ld) +0.9%(I, —w,,_, (old))
(Cluster k=1) w,, =—0.88+0.9x(1— (~0.88)) =0.8120

ED(1) =(—0.88—1)% +(—0.84—(-1))* +(—0.85—(-1)* +(0.99—(—1))* =7.5426
(Cluster k=2) Wy =—084+09%(—1-(-0.84))=—0.9840
ED(2) = (0.98—1)% +(0.94— (—1))* +(0.97— (—1))* +(—0.87— (—1))* = 7.6618 Wy =—0.85+0.9%(-1-(-0.85)) =—0.9850

w, =0.99+0.9x(-1-0.99) =—0.8010

The winner cluster unit is K = 1 because ED is 0.8120 0.98
minimum. Therefore, the weights connected to the _0984 0.94
winner cluster unit 1 should be updated W=l 0.085 007

| —0.801 -0.87]
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KOHONEN NEURAL NETWORK
(KNN)

| Illustration on Clustering of Bipolar Input Patterns | Epoch Number1 /
Pattern Number 4

Calculation of Euclidean Distance Weight Updation

i Wi, (rew) = wy,_ (old) + 0.9% (I, —w,,_, (0ld))
ED(D) =3 (wy — 1)

i=In w, =0812+09%x(-1-0812))=-028188
(Cluster k=1)
ED(1)=(0.81—(—1))* +(—0.984—(—1))* +(—0.985—1)* +(—0.801—1)* =10.4674 wy, =—0984+0.9x(—1-(—-0.984)) =—0.9984

(Cluster k=2) wy, =—0985+0.9%(1—-(-0.985))=0.8015
ED(2) =(098—(-1))* +(0.94—(-1))" +(0.97—-1)? +(-0.87—-1)* =11.1818

W, =—0801+09%(1—(—0.801)) =0.8199

. .- . [ 0.8120 0.98 |

The winner cluster unit is K = 1 because ED is

minimum. Therefore, the weights connected to the| , _| 9% 094

winner cluster unit 1 should be updated —0.985 0.97
—0.801 —0.87
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KOHONEN NEURAL NETWORK
(KNN)

| Clustering of Numerical Characters |

% This application aims to cluster 25 binary patterns representing numerals
from 1 to 9. They are represented by 9 X 7 matrix format.

% The objective is to cluster the 25 patterns into 9 groups. Each of the input
patterns are represented as binary input vectors .

» Let, n_.=_25, m_=_2, initial topological parameter R_=_4 . Let the learning rate
be 0.9 and will geometrically decrease 0.5 times for every epoch.

% The topological parameter R (geometrical radius) will be decreased by
subtracting a small value of 0.2 for every epoch. The value of R should be
rounded off to obtain an integer value.
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KOHONEN NEURAL NETWORK

(KNN)

| Clustering of Numerical Characters

% Sample input test pattern for clustering
la b lc 3a b 3c
0001000 0001000 0001000 1111111 1111111 1111111
0001000 0011000 0011000 0000001 1000001 0000010
0001000 oO01000 0101000 0000001 oo00001 gooo0100
0001000 0001000 0001000 0000001 0000001 0001000
0001000 0001000 0001000 1111111 0111111 0010000
0001000 0001000 0001000 0000001 0000001 0111110
0001000 0001000 0001000 0000001 0000001 0000001
0001000 0001000 0001000 0000001 1000001 0000010
0001000 0011100 1111111 1111111 1111111 1111100
% Results: Clusters
Group 1 2 3 4 5 6 7 8 9
Pattern - 10,11, 1236 | 4.14.15 - 19 5.13.18, 7.8
Trial No.1 12 9.18.20 17.21,

% The simulation is conducted for 10 trial runs and frequency of occurrence of
clustered groups .

10.11. 1.2.3.6

5.13.16.17.21, 115 ~
12 9.18.20 4,15 .14

22.23.24.25 ' 19

Frequency 10 10 10 4

Groups

L]
[ ]
[ ]
| ]
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LEARNING VECTOR
QUANTIZATION (LVQ)

“ Learning Vector Quantization (LVQ)
network is a supervised neural
network where the input vectors are
trained for a specific class or group
already mapped in the training set.

% The architecture of the LVQ is similar
to the Kohonen neural network where
the number of output units is equal to
the number of available classes, but
without a topological structure which
is assumed for the output units.

% The weight updation is carried out only
for the weight vector for which the
input vector corresponds to the output
unit. A reference input vector is
selected for a specific class.

o o

Architecture of LVQ




| ARTIFICIAL NEURAL NETWORKS I
LEARNING VECTOR

QUANTIZATION (LVQ)

1. Initialize the input vector as reference vector i.e., initial weight values and set the
learning rate(n) within 0.1 <n* n <1.
2. For each input pattern I, training pair compute the Euclidean distance between input

vector and Weight vector for each output cluster unit k. Find the unit index K for
which the ED is minimum.

ED(k) = > (W, —1,)

=1:n

3. Update the weights for kt" output unit

If T=0
Tlw, (t+1) = w,, (t) + 77*(Xh — Wiy (t))‘

4

Whk (t+2) = W (1) —1* (X, ~wp (1))

4. Reduce the learning rate

If T+0,

Repeat steps 2,3 & 4 till the maximum number of epochs is reached




LEARNING VECTOR
QUANTIZATION (LVQ)

| ARTIFICIAL NEURAL NETWORKS I

Clustering of Bipolar Input Patterns in LVQ
nd worked Example: Cluster 6 bipolar patterns into 2 clusters

Ha

Let, n = 4 and m = 2 and learning rate be
n=0.9 and will geometrically decrease 0.5
times for every epoch.

Initialize the input vector as reference
vector i.e., initial weight values and set
the learning rate(n) within 0.1 =n* n <1.

Arbitrarily select, the reference vector.

Here, I, is selected as reference vector for
the first cluster and I, is selected as
reference vector for the second cluster.

n X m

g = = ) D =

n X m

o
G

3
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LEARNING VECTOR
QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Pattern Number 1

Epoch Number 1‘

Calculation of Euclidean Distance

ED@) = )" (W, = 1,)°

=In

Cluster k=1)
‘ED(l) =(1-1)° + (1-1)° ‘
+(1-1)° +((-1) - (-1)° =0

(Cluster k=2)

ED(2) = ((-)-1° +((-1) -1
+((-)-D°+(1-(-1)° =16

Output unit Class is 1. i.e. O,=1 ED
(1) is minimum.

Target Class is 1, i.e. T =1.

Since T = O,, the weights connected
to cluster unit 1 should be updated.

WEIGHT UPDATION

Wiy (MEW) =W, (0ld) +0.9% (I, —wy,_, (0ld))
w11 =1+09%(1-1)=1
a1 =1+0.9%(1—1) =1
w31 =14+0.9%x/1-1)=1

Wy = (=1 +0.9x(=1—(=1)) =—1

W=

L dn X'm
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LEARNING VECTOR

QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Pattern Number 2

Epoch Number 1‘

Calculation of Euclidean Distance WEIGHT UPDATION
ED@) = Y (W —1,)° Wy (1€1) = 835y (01d) +0.9* (I =y, (0ld)
1=l W, =—14+0.9%(-1-(=1))=-1

(Cluster k=1)
ED(®) =@1-(-1) +(1-(-D)° | -
(Cluster k=2) Wy, =1+09x(-1-1)=1
ED(2) = (~1- (-1)? + (-1— (-1))°
+(-1-(-D)? +(@-1% =0

Wy, =—14+09%x(-1-(-1)) =-1

W =
Output unit Class 2. i.e. 0,=2 ED (1) I -1
is minimum. 1 _
Target Class is 2, i.e. T =2. - An X'm

Since T = O,, the weights connected
ta cluster ynit 1 shoild he u.nn'ahod
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LEARNING VECTOR
QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Pattern Number 3

Epoch Number 1‘

Calculation of Euclidean Distance

ED@) = )" (W, = 1,)°

=In

(Cluster k=1)

ED(D) = (1-1)° + (1 (1))’ ‘
+(L—(-1))* +(-1-(-1))* =8
(Cluster k=2)

ED(2) = (-1-1)" + (1= (-D)’
+(-1- (D) + (- (-D)° =8

ED (1)=ED(2); T=2;

Weights corresponding to O1 and O2
are updated.

WEIGHT UPDATION

Wk (Mew) =w,, _ (old) —0.9*(I, —w, _, (old))

Wi =1-0.9%(1—1)=1

W21 =1-09%(—-1-1)=2.8

w31 =1-09%x(—-1—-1)=28
Wq4]1=—1-09%(—-1—¢(—-1))=-—1

Wype—n (F1EeM) =15, (0ld) + 0.9%* (I, —w,,_, (0ld))

W12 =—14+09%(1—¢—-1))=0.8

1 08
My, =—1+0.9%(—1—(—1))=—1 - 1
. W=
My, =—1+0.9=x(—1—(—1)) =—1 2. —1
Wy =1+ 0.9%x(—1—1) =— 0.8 -1 =080y xm
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LEARNING VECTOR
QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Pattern Number 4

Epoch Number 1‘

Calculation of Euclidean Distance

ED@) = )" (W, = 1,)°

=In

(Cluster k=1)

ED() =(1-(-1)" +(2.8-(-D)’
+(2.8-1)°+(-1-1)* =25.68
(Cluster k=2)

ED(2) =(0.8—-(-1)* + (-1-(-1)*
+(-1-1)*+(-0.8-1)* =10.48

ED(2) is minimum O=2; T=1;

T # O,, Weights corresponding to O2
are updated.

WEIGHT UPDATION

WhK =2 (new ) =w2(old)—0.9%*(I4 —wqj=>(old))
w12 =0.8-09%x(-1-08)=242

W29 =—1-09%(-1-(-1)) =—1

w32 =—1-09%(1—-(-1))=-2.8
wW2=—-08-09%(1-(-08)) =-2.42

1 242 ]

W=\~

A )
L T dn X'm
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QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Pattern Number 5

Epoch Number 1‘

Calculation of Euclidean Distance WEIGHT UPDATION

ED@) = )" (W, = 1,)°

n Wy (new) =w,,_ (old) + 0.9 * (I, — wy,_, (old))
(Cluster k=1) w11 =14+0.9%x(-1-1)=-0.8

ED@) = (1-(-1)* +(2.8-1)° |

+(2(.§_1()2 +((_f)_1)2(:14.4)8 Wo1=2.8+0.9%(1-2.8)=1.18
(Cluster k=2) w31 =2.84+09%x/1-2.8)=1.18

Wy =—1+0.9%(1—(~1))=0.8

ED(2) = (2.42—(-1))? + (-1-1)° 8|
+(~2.8-1)% + (-2.42-1)* = 41.832

(—0.8 242 ]
ED(1) is minimum O=1; T=1,; 1.18 —1
W =
T=0,, 1.18 —2.8
0.8 —-2.42 .
The weights connected to cluster unit - in X'm

1 chniild he ll_nd;-ﬂ'pn'
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Epoch Number 1
Pattern Number 6

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Calculation of Euclidean Distance WEIGHT UPDATION

ED(]) = Z Wi, — WhHEK =1 (1eW ) = Wijc=1(0ld)— 0.9 *(I5 — W —1( 0ld))
h=Ln

w11 =-08-0.9%x(-1-(-0.8))=—0.62
(Cluster k=1)

ED(1) = (-0.8— (-1))? + (1.18—1)? ‘
+(1.18—(=1))? +(0.8— (-1))* =8.0648

(Cluster k=2)
ED(2) = (2.42—(-1))? + (-1-1)° ‘

Wo1=1.18-0.9x(1—1.18)=1.342

w31=118-0.9x(—1—1.18)=3.142

wl=08-09%x(-1-0.8)) =242

+(-2.8—(-1)* +(-2.42—(-1))* = 20.95 —0.62 242
ED(1) is mini O=1; T=2 wo| Pt
(1) is minimum O=1; T=2; 3142 _2
. 747 _2 4?2
T#0y, | 242 "4'-11 X m

The weights connected to cluster unit
1 should be updated
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QUANTIZATION (LVQ)

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

RESULTS

At the second epoch, the learning rate

will geometrically decrease 0.5 times for
every epoch. Therefore, the learning rate
will be 0.45 for the starting of the second | |Pattern 1- (1 1 1 -1), Pattern 4-

epoch. (-1 -11 1) and Pattern 5- (-1 1 1

1 lon he first output
After 1000 epochs, the learning rate and ) belongs to the firs p

weights are found to be 17 =8.3994e-302 unit.
Pattern 2- (-1 -1 -1 1), Pattern 3-
04760 —0.3775] (1-1-1-1) and Pattern 6- (-1 1 -
0.3906 —0.2086 1 -1) belongs to the second
W = ' output unit.

1.0822 —1.0691
| 0.5451 —0.4139




LEARNING VECTOR

QUANTIZATION (LVQ)

| ARTIFICIAL NEURAL NETWORKS I

| Classification of Numerical Characters

This application aims cluster 25 binary patterns representing numerals from 1
to 9 using Matlab.
Numerals are represented by 9 X 7 matrix format. Some sample numeral
|patterns are given below.

la 1b 1c 8b 9a 9b Pattern
0001000 0001000 0001000 0111110 1111111 1111111 | Similarto patterns at Numeral No
0001000 0011000 0011000 1000001 1000001 1000001 | left, various patterns 1 123
0001000 0001000 0101000 1000001 1000001 1000001 representing -
0001000 0001000 0001000 1000001 1000001 1000001 numerals are used 2 4,5,6
0001000 0001000 0001000 0111110 1111111 1111111 and the pattern 3 78,9
0001000 0001000 0001000 1000001 0000001 0000001 number of the 4 10,11,12
0001000 0001000 0001000 1000001 0000001 0000001 numeralsaregiven 5 13,14
0001000 0001000 0001000 1000001 0000001 1000001 :
0001000 0011100 1111111 111131317 lcbicy 0 19,1627
7 18,19,20
Pattern No. 1 (1a) ,2 (1b), 3(1c) PatternNo.22(8b) representing numeral 8 ) 2122
representing numeral 1 Pattern No. 23(9a), 24(9b) representing 9 232425

G

Class 1 2 3 4 5 6 7 8 9
Patterns 1,2,3 6 5,7,8 10,11, 12 | 9,13,14, 16 15 1382'0 17,22 4,21, 23, 24, 25




ARTIFICIAL NEURAL NETWORKS I

HAMMING NEURAL NETWORK
(HNN)

Lippmann (1987) modelled a two layer
bipolar network called Hamming neural
network. The first layer is the Hamming
net and the second layer is the MAXNET.

The first layer is a feed forward type
network which classifies the input
patterns based on minimum Hamming
distance. The Hamming distance (HD)
between any two vectors is the number
of components in which the vectors
differ.

The Hamming net uses MAXNET in the
second layer as a subnet to find the unit
with the largest net input. The second
layer operates as recurrent recall
network which suppresses all the outputs
except the initially obtained maximum
output of the first layer.

Architecture of HNN
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(HNN)

LetI (1-11111) and S (11-1-111) be the two fixed length bipolar vectors .
Hamming distance HD (I, S) is equal to 3.
The scalar product of A and B is

I'S= [n-HD (I, S)]-HD (1, S)

If nis the number of components in the vectors, then [n-HD (I, S)] are the
number of components in which the vectors agree.
I'S = n-2HD (1, S)

Let I be the input vector and S be the vector that represents the patterns placed
on a cluster. For a two layer classifier of bipolar vector, the strongest response
of a neuron indicates that the minimum HD exists between the two vectors I
and S. For setting up the weights and bias, the above equation is written as:

HD (I, S) = I''S/2 +n/2

If the weights are fixed to one half of the standard vector S/2 and bias to n/2,
then the network will be able to find the input vector I, closest to the standard
vector S. This is done by finding the output unit with the largest net input.
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HAMMING NEURAL NETWORK
(HNN)

Illustration on Finding the Best Match with Standard Vector:

Hand worked example:

Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

The two standard bipolar patterns are S(1) = (11-1-111)andS(2)=(-1-11-111).

Here n=6, m= 2 and I= 4.

The 4 bipolar input patterns (1), initial weights (W) and bias (B) are

1

-1 -1

-1

-1 -1

1 -1

-1 1

-1 -1

1 1

1 1 (1)
1 —1 (Z,)
1 1 (I;)
1 -1 J_J_H{IJf]

B=[3 3]

T o dn X m

The net input to each output unit of
the first layer for all the 4 input
patterns is calculated from

0, =B, +> LW, j=1.m
h=1
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(HNN)

Illustration on Finding the Best Match with Standard Vector:

Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Computation in the first layer
O (0)=3+1x05+1x05+1x(—0.5)+(-1)x(—0.5)+1x0.5+1x0.5=5 Pattern 1
(111-111)
0,(0)=3+1x-05+1x-05+1x05+(-1)x(-0.5)+1x0.5+1x0.5=4
1 0.25
Computation in the second layer (MAXNET) "5 7005 1
=0

- sum, = —0.4580< 0,
O(O+1) = F(P(0)—0.25=<(A)N =40, (0+1) = F(O,(0)—0.25=(5))=2.75 2
O, (0) =4: O, (0)=2.75 f (Sumz) =0

=1
O1+1)= (1) —025=x(2.75))=3.3125. O, A +1)= f(O,(1) —025=x(4))=1.75 The non-zero InPUt
O (1) =3.21250,(1) —1.75 unit j=1 of the

=2 MAXNET is the winner
O(2+1)= F{H(2)—025%x(1.75))=2.8750. L (2+1)= fF(D(2)—0.25%x(3.3125)) =0.9219
O (2)=287500,(2)=09219 .

— (111-111),iscloser
O, (B+1) = F(O,(3)—0.25%x(0.9219)) = 2.6445:0,(3+1) = f(0O,(3) —0.25x%(2.8750)) = 0.203 1 to 5(1) = (1 1-1-1
O, (3) =2.6445.0,(3) = 0.2031 1 1)_

O(A4+1) = F(O(4)—0.25x(0.2031)) = 2.5938. O, (4+1) = f{O,(4)—0.25=x(2.6445)) =0
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Illustration on Finding the Best Match with Standard Vector:

Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Computation in the first layer

Pattern 2
(-1-1-111-1)

O 0)=3+(Dx05+(Dx05+(Dx(-0.5)+1x (0.5 +1x05+(-1)x05=2

O (0)=3+(-DDx-05+(-Dx-05+(-1)x05+1x(-05)+1=x05+(-1)x0.5=3
Computation in the second layver (MAXNET)

=0

O, (0+1) = £(0,(0)—0.25%(3)) =1.25:0,(0+1) = F(O,(0)—0.25%(2)) = 2.5
0,(0) =1.25:0,(0) = 2.5

sum, = —0.4297 < 0,

f(sum)=0

=1
O,(1+1) = F(O,(1) —0.25%(2.5)) = 0.625. O,(1+1) = f(O,(1)—0.25x(1.25)) = 2.1875 The non-zero input unit
0,(1) = 0.625.0,(1) = 2.1875 j=2 of the MAXNET is
t=2 the winner
0,(2+1) = £(0,(2)—0.25%(2.1875)) = 0.0781: 05 (2 +1) = F(O,(2)—0.25% (0.625)) = 2.0312
0,(2) =0.078L0,(2) = 2.0312 I,=(-1-1-111-1)
=3 is closer to

: S(2)=(-1-11-111).
O,(3+1) = F(O,(3)—0.25%(2.0312)) = 0:0,(3+1) = £(O,(3)—0.25% (0.0781)) =2.0117
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(HNN)

Illustration on Finding the Best Match with Standard Vector:

Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Computation in the first layer

0,(0) =3+1x0.5+(=1)x 0.5 + (=1) X (=0.5) + (—1) X (—0.5) + 1x 0.5+ 1x0.5=5 Pattern 3

O;(0)=3+1x-05+(—1DXx-05+(-Dx05+(-1)x(—-0.5)+1x0.5+1x0.5=4 (1 -1 -1 -1 1 1)
Computation in the second laver (MAXNET)

t=0

O,(0+1)= f(O,(0)—-025x(4)=4.0,(0+1) = f(O,(0)—0.25%(5))=2.75

A® 40,0 =275 sum, =—0.4580< 0,
=1 f (sum,)=0

O,(1+1) = f(O,(1)—0.25%(2.75) =3.3125: O,(1+1) = F(O,(1) —0.25x(4)) =1.75

0,(1)=3.21250,(1)=1.75

=2 The non-zero input unit
O0,(2+1)= £(0,;(2)—0.25%(1.75)) = 2.8750: O, (2+ 1) = F(0,(2) —0.25%(3.3125)) = 0.9219 j=1 of the MAXNET is
0,(2) =2.8750.0,(2) = 0.9219 the winner.

=3 I,(1-1-1-111)

0,(3+1) = £(0,(3) —0.25%(0.9219)) = 2.6445.0,(3+1) = f(0,(3)—0.25%(2.8750)) = 0.2031 is closer to

O,(3) = 2.6445.0,(3) = 0.2031 S(1)=(11-1-111).
=4

O,(4+1)= f(O;(4)—0.25x(0.2031)) =2.5938.0,(4+1) = f(O,(4)—0.25x(2.6445) =0
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HAMMING NEURAL NETWORK
(HNN)

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:

Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Computation in the first layer

O,(0) =3+ (=) X 0.5+ (=) X 0.5+1x(—0.5) +1x(—0.5) +1x 0.5+ (1) x0.5 =1

O, (0)=3+(-1)x-05+(-1Dx-05+1x05+1x%x(—0.5)+1x05+(-1)x05=4
Computation in the second laver ((MAXNET)

Pattern 4
(-1-1111-1)

=0

O,(0+1)= f(0,(0)—0.25%x(4)=0.0,(0+1) = f(O,(0)—0.25x (1)) = 3.75
Simce sum, =0< 0. f(sum) =0

sum, =0 <

0
f (sum,)

0,
o)

The non-zero input unit
j=2 of the MAXNET is
the winner.

I, (-1 -1 1 1 1 -1)
icloser to
S(2)=(-1-11-111).
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(HNN)
I Character Recognition through Clustering of Numerical Characters |

This application aims to recognize (A) (1)
the closest match of the input test The input '
pattern of an alphabet with an The input
error. Here, the representation of 10100 01010
an alphabet is by a matrix of 7 X 5 01010 00100
bipolar elements. 10001 00100
10001 00100
Though Hamming neural network 11114 00100
can be used for clustering of 1 000 1 00100
patterns, this application tries to 000 01110
recognize the input patterns with s closer to i< closar fo
an error and finds the closest TEE T
match. Here, n = 35, m = 26 00100 01110
(Number of cluster units), and T = 01010 00100
26 (Number of input patterns). 10001 00100
10001 00100
11111 00100
1000 1 00100
10001 01110

Simulation Results of HNN
for Character Recognition
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HOPFIELD NEURAL NETWORK

(HNN)

John Hopfield -1982- recurrent artificial
neural network

It is used as a content-addressable
memory systems with binary threshold
units.

A content-addressable memory systems
allows the recall of data on the degree of
similarity between the input patterns and
the patterns stored in memory.

Hopfield neural networks is an example
of Associative memory neural networks
(AMNNSs).

AMNNSs are single-layer nets in which the
weights are determined for the network
to store a set of pattern associations.

In the Hopfield network, only one unit
updates it activations at a time based
on the signals it receives from each
other unit. Also, each unit continues to
receive an external signal in addition to
the signal from other units in the net.

| Wiz

| Hopfield Neural Network |




(HNN)

I Illustration of Settlement of Stable Input Patterns: Hand worked example |

Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard
binary patterns S(1) =(111100)andS(2)=(011111).

Here, P=2,T=3andn =6
(1)

1 11010
(I,)

I=lo0 1 0 1 1 ,

001111(3‘]I

Txn (I:L]

—

when h =1
=0
W, =(2xD-Dx(2x)-1 =1

Wy =((2x0)—1)x((2x0)—1) =1
W =0

when h=2
7, =0
W, =((2x0) =) x(2x1)—1) =1

W =((2xD)-Dx(2x1)-1)=1
W =0

Initialization of weights as per Hebb rule for binary numbers

The weight of the binary patterns are
¥

W, = Z(ESJ.(E’J) ~Dx2S,(h)—D.wherei=1..n j=1.n andi+ j

h=1

W,=0 fori=j
If the patterns to be handled are bipolar, then the weights are,
HU = ZSF{M X .S'J.UJ’}.U'IMJ'{? i=L.nj=L.n andi=j

h=1

ITU =0 fori=j

Here the weights are initialized as,

ITU = 2(25}(;?}—1}% {ESJ_.{I;} —1).wherei=1...6,j=1....6 andi # j

h=1

W;=0 fori=j

| ARTIFICIAL NEURAL NETWORKS I
HOPFIELD NEURAL NETWORK
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(HNN)
I Illustration of Settlement of Stable Input Patterns: Hand worked example |

Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard
binary patterns S(1) =(111100)andS(2)=(011111).

0 1 1 1 -1-1 [0 -1-1-1-1-1

=

0
I 0 1 1 -1 -1 -1 0 1 1 1 1 0 220 0
W..:l L 01 -1 -1 +—1101 [ 1 :02[}20 0
S 0 S S BRI RS B -1 1 0 1 1 00220 0 0
-1 -1-1-110 1 -1 1 1 0 1 -2000 0 2
-1 -1-1-1110 -1 1 1 1 0 2000 2 0

= L =2 L ' i
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I Illustration of Settlement of Stable Input Patterns: Hand worked example |

Pattern 1
(111010)

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (111100)
and S(2) =(011111).

Let the order of the asynchronous updation of units be [4 36 5 1 2].
Computing the net input to the units (k=1)

Opee 4= 0+(Ax0)+(Ax2)+(Ix2)+(0x0)+(1x0)+(0x0)=4

O, =L~ Olvr-;_r-t:}OO:(l 1 11 1 0)

O e 3=1+(1x0)+(Ax2)+(1Ix0)+(1x2)+(1x0)+(0x0)=5

O; =L~ O1.ne_-_3’0-01:{1 1 1 11 D}

O 6= 0+ (Ax-2)+(1x0)+(1x0)+(Ax0)+(1x2)+(0x0) =
O =0.0,,. s =0.0,=(1 1 1 1 1 0)
Ol_m_i—1+(1><—2}—|—(l><{]')—|—('1><{]')+(1><D}+(1><(}}+({}><2)=—l
O, =0.0,, s<0.0,=(1 111 0 0)

O e 1=1+(1x0)+(Ax0)+(Ax0)+(1x0)+(0x—-2)+(0x-2) =1
o,=L..0,,,=>0.0=(1 111 0 0)

Oy »=1+(1x0)+(1x0) +(1x2)+(1x2) +(0x0) +(0x0) =5
O,=1L"0,, ,>0.0,=(1 111 0 0)—=SO=011110 0).Converged
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I Illustration of Settlement of Stable Input Patterns: Hand worked example |

Pattern 2
(010111)

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (111100)
and S(2) =(011111).
Let the order of the asynchronous updation of units be [31 6 4 2 5].
Computing the net input to the units (k=2)

O =0+(0x0)+(Ix2)+(0x2)+(Ix2)+(Ix0)+(1x0)=4

2nat 3

O, =1:0,,,;>0.0,=0 1111 1)

0, 1= 0+(0x0)+(1x0)+ (1x0) + (1x0) + (1x-2) + (I1x-2) =4
031:_1-"'01.»?9:_1{00::{C’ 11111

Oy e 6=1+(0x-2)+(1x0) +(1x0) +(1x0) +(1x2) +(1x0) =3
Oy =170, >0.0,=(0 1 111 1)

Oy 4= 1+(0%x0) +(1x2) + (1x2) + (1x0) + (1% 0) + (1x0) =5
O,y =10,,. ,>0.0,=(0 111 1 1)
OE_M_I:1+(0_><0)+(1><0)+(1><2)+(1><2)+(1><0)+(1><0):5
033:1-"'03.“.—_: ::’0-02-:(0 11111

O, 5= 0+(0x=2)+(1x0)+(I1x0)+(1x0)+(Ix0)+(1x2) =3
Oy =170,,, 5>0.0,=(0 1111 1)=>S2)=011111).Converged
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HOPFIELD NEURAL NETWORK
(HNN)

I Illustration of Settlement of Stable Input Patterns: Hand worked example |

and S(2) =(011111).

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (111100)

Pattern 3
(001111)

Computing the net input to the units (k=3)
OJJIE"' 4

Oy =105, ,>0.0,=(0 0 1 1 1 1)

3

0,=00;,,,<00,=0 1111 1)

Q

3net 6

s =L"05,. s>0.0,=(0 1 1 1 1 1)

S O

3na_3

=120, 5>0.0,=(0 1 1 11 1)

Lad
ih

2, el

Let the order of the asynchronous updation of units be [4 2 1 6 5 3].

=1+(0x0)+(0x2)+(1x2) + (1x0) +(1x0) + (1x0) =3

0, _3—(]+ (0x0)+(0x0)+(Ix2)+(Ix2)+(1x0)+(1x0)=4
0, =1~ OJM]:»DQBZ[Olllll)
05, 1—0+(DxO}+(1><0)+(1><0)+(1><O)+(1><—2)+(1><_2)_

=1+(0x-2)+(Ix0)+(1x0)+(Ix0)+(1x2)+(1x0)
=1+(0x-2)+(1x0)+(I1x0)+(I1x0)+(I1x0)+(1x2)

O, 5= 1+(0x0) +(1x2) + (I1x0) + (1x2) + (1x0) + (I1x0) =5
O;=1"0;,, 5>0.0,=(0 111 1 1)»5(2)=(0 1111 1).Converged

-
2

-
2
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The Hopfield network can be used for
pattern recognition to identify the
standard pattern associated with the input
test pattern.

Here, 3 alphabets (A, B & C) are the
standard patterns.

The representation of an alphabet is by a
matrix of 7X5 binary elements.

(A) (B) (©)

00100 11110 01110
01010 10001 10001
10001 10001 10000
10001 11110 10000
11111 10001 10000
10001 10001 10001
10001 11110 01110

0100010101000110001111111000110001]. B=[11110100011000111110100011000111110]
C=[01110100011000010000100001000101110].

(a) Stored Patterns

(A7) (B (C
10100 11110 01110
01010 10101 10001
10001 10001 10000
10001 11110 10000
11111 10001 10000
10001 10001 10001
10001 11110 01100
A*=[10100010101000110001111111000110001], B*=[11110101011000111110100011000111110]

C’=[01110100011000010000100001000101100],
(b) Test input patterns with single element errors

(A7) (B (c)
11100 11110 1111
01010 10111 1000
10001 10001 1000
10001 11110 1000
11111 10101 1010
10001 10001 1000
10101 11110 0110

A"=[10100010101000110001111111000110001], B*=[11110101011000111110100011000111110]
C’=[01110100011000010000100001000101100].

(c) Test input patterns with three element errors

| ARTIFICIAL NEURAL NETWORKS Il
HOPFIELD NEURAL NETWORK
(HNN)
I Character Recognition through Stabilization of Input Test Patterns

O =000 -0
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| Character Recognition through Stabilization of Input Test Patterns

ISimuIation Results for Test Input Patterns with Single Element Errors

The input The input

The mput

The input The input

The input
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HOPFIELD NEURAL NETWORK

(HNN)

| Character Recognition through Stabilization of Input Test Patterns

ISimuIation Results
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BIDIRECTIONAL ASSOCIATIVE

MEMORY (BAM)

‘0

L)

*

D)

*%

0

L)

L)

Bart Kosko -1988

BAM has the properties of two-layer non-
linear feedback neural networks

Heteroassociative information is encoded
in a BAM by summing correlation weights
matrices obtained from the associative
pairs of the binary or bipolar patterns. The
architecture of the BAM consists of two
layers of neurons, connected by bi-
directional weights

The weights of the BAM are initialized
based on the Hebb rule.

1™ Layer

W,

Wi

W,

W i

v

b

04

0,

| Oy

1
0" Layer

IBAM Architecture
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% Suppose s(h) and T(k) are associated | |.. Tpe bidirectional weights of for the P
P paired patterns.

paired bipolar patterns are

/7

% The bidirectional weights for the P
aired binary patterns are P

P ] yP W, => S;(k)xT,(k).wherei=1...n.j=1.m
Hj}_ = Z[E.S'I. (fc)—'l)x(lfj. (kF)=1).wherei=1..n. j=1..m p=l

p=l

/7

% The activation functions of the and
layers for the binary vectors are Ith

s For the bipolar vectors,

and Oth . ,
, : L i I, >6
l U‘ﬂ ‘EI-" ner ’H: '9 f e |
. T I, =41, ?f f*m}r ; =0 ¢
Iy =31; if I,n ;=06 ’ D ‘
) : - -1 U‘ﬂ 1, net § = o,
1 e <6, ' T h
( ] 1 if 0O, .>6.
I If Or net o 0, f T ’
. Her _ | J (}r — OH Ifh OI_ net i — 5.—' -
0, =10, if Oe =01 J o T )
] ] : et _ ] J -1 Ur‘ O,}. . < 6
0 ”‘ On‘c ngt - 6. ' B o
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| Illustration of Settlement of Stable Input Patterns |

% Store 2 paired binary standard patterns in BAM and test 4 binary test
patterns.

% Standard Binary Patterns
A=[00100010101000110001111111000110001] 1s paired with 1= [01]
B=[11110100011000111110100011000111110] 1s paired with 2= [10]

* Binary test patterns
A=[00100010101000110001111111000110001]

B=[11110100011000111110100011000111110]
A’ =[10100010101000110001111111000110001]

B =[11110101011000111110100011000111110]
% Here, P=2,N=4,n=35and m = 2.

L)
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BIDIRECTIONAL ASSOCIATIVE

MEMORY (BAM)

I Illustration of Settlement of Stable Input Patterns: Hand worked example |

% Store 2 paired binary standard patterns in BAM and test 4 binary test
patterns.
< Activation of the and layer of BAM Ith Oth

0010001010000110001111111000110001]  (Z,) 00] (O)
|1111010001100011111A00011000111110|  (Z,) H_|00] (©)
10100010100001100011 1111100010001 | (1) 00| (0,
1111010101100011111000011000111110]  (Z,) 00], (0))

¥ The P paired binary patterns are stored as weiqghts using Hebb rule

001000101(000110000011111000110001 7 01
|1111010001100011111000011000111110 - 100 R

* T he} weights are initialized
= ZST. (MxT;(h).wherei=1...35, j=1..2
p=1
Transpose 22000000 2 -20-2-2-20000000
H;”JW‘L_.‘.‘JOJL- —
v -2000000-2- 220000000-

S
1

| S BN
[ I

IJ -2
[
1

s

2 0
2 0-

IJ | ]
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| Illustration of Settlement of Stable Input Patterns : Hand worked example r

% Store 2 paired binary standard Pattern 1-
patterns in BAM and test 4 [00100010101000110001111111000110001]
binary test patterns.
Pattern 1- s Computing the net input to the input units (t=1)
[00100010101000110001111111000 I 0. 7 __~
110001] tet I 1 w2 T 260° columm
Computing the net input to the output) ,,=0.""1,,. , <0,
units (t=1) e =Op  XW, 0  =-
- ) - 11 I,=0.01,, ;<0
{)f-”ﬁ'_lz Il:'r rowx33 X HSﬁ}cl;" column =-14 :
I 3= Op o X Wy i =2
l(:]l.l =0, l(:}l.m’: _1 <0, l',rll:;ﬁ:-l_-.-fl ot 1; > O__“
O_rw_r zzfl_,_,?wﬂi Y 523™ column =14 Iipe n=[-2-20-20-2202-2000000-2-2-2202220000000-2-2-2 2},
I,,=[000000101000000000010111000000000O0 1],
O,=1L2.0. >, >0,
"0 1] (0,) checking the equilibrium state, the activations of the
00 O output unit O, ,,=[0 1] has already become equal to
O— (©) T,m=[01] the, A=
00 (O;) [00100010101000110001111111000110001], the
00|. (0O, input test pattern ( t=1) has converged and A is
- A associated with 1= [01] ]
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BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

I Illustration of Settlement of Stable Input Patterns : Hand worked example |

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Pattern 2-
[11110100011000111110100011000111110]

Computing the net input to the output
units (t=2)

(:] ."..'?E’,“_]_: 74 35 X ]}I;j.f'— . — — 22
O,; =L~ Oz.;-mr_l >0,
().".H'r:'-‘!‘ 2= I‘J"“‘ Fowx33 x I'I:ix‘.ﬁ:-’f columm =-22
(}3-3 = 0‘ .+.Ol.li'e‘.|‘_3 < D 3
01] (O)
(1o ©
oo )
0 0_ N=m (O4j

Computing the net input to the input units (t=2)

= xW_ =2
I"-”""_I 2 v 24" column

I, =1 "'Iz_ne:_1 >0,

I f—'?f’f_zz ()2"'1 rowx2 x I:Tb- 2 column =2

Ly,=1"1, >0,

_ . —_"
tnet 35 C’l"’"'- row=2 x ¥ 235" columm ~ T

235 = 0.0 Dy e 35 <0,

e n—=]220202-20-22000000222-20-2-2-20000000222-2],

I
I
I 2-2

I_,,=[1101010001000000111000000000000111 0],

checking the equilibrium state, the activations of the
output unit O, ,,=[1 0] has already become equal to
T,,=[10] the, B =
[11110100011000111110100011000111110], the
input test pattern ( t=2) has converged and B is
associated with 2= [1 0]
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BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

I Illustration of Settlement of Stable Input Patterns : Hand worked example |

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Pattern 3-
[10100010101000110001111111000110001]

Computing the net input to the output
units (t=3)

{)r.um‘_lz 3 rown3s XV f35>1;" column = _1'2
{}3_1 =0, Oﬁ_rm‘_l < ().
O tnet 2~ ‘3'3”* rowas | 352 coham 12
{)3.2 = .I'":O_l.neu‘ 2 >0 >
01] (0)
10 0,)
0= (O,
01 (Oy)
0 0_ N=m (O-ij

Computing the net input to the input units (t=3)

I-’-”"—'_lz Oi"f rowx2 XM 2% column =—2
I,, =0, "'IS.r:e:_l <0,

= 7 =_2
I toet 1 ()3”1 row2 X Hl-l"d columm -

IS-—? = 0-".I3..II(’!‘ 2 <0,

7 tnet 35 O_a-" rowe2 H"stﬁ"*' column 2
fﬁ =11 =0,

I
I

5 3.met_35

=-2-20-20-2202-2000000-2-2-2202220000000-2-2-2 2]])“I

3
=3ner_n L =
3

=p000001010000000000101110000000000 1],

=3n

checking the equilibrium state, the activations of the
output unit O; ,,=[0 1] has already become equal to
T;,=[01] the, A’ =
[10100010101000110001111111000110001], the
input test pattern ( t=3) has converged and A’ is
associated with 1= [0 1]
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MEMORY (BAM)
I Illustration of Settlement of Stable Input Patterns : Hand worked example |

Store 2 paired binary standard Pattern 4-
patterns in BAM and test 4 binary [11110101011000111110100011000111110]
test patterns. Computing the net input to the input units (t=4)
Computing the net input to the output I -0 W A
units (t=4) tet T 4™y X 207 column
{}r-?lé‘r_lz Ii"a rowx3s ? f35> 17" column =22 jr4.1 =1, "‘1?74_:?9:_1 =0,
{)_1_1 - l. " O—i.i‘!e‘e‘ 1 e U . If-”ﬁ_lz 4™ o2 ?-_'-‘KE"""{ column =2
B I,,=1"1 >0,
— A" —_ 4.2 4 net_2
O tnet_2 Id-"';' FOWHIS X Hﬁi}cf“'— columm .
{)—1.3 - O B Oli-..lle:__'-' < O 5 I-’-”*T_-ﬁ: O—I""’ rows x H.rlﬁj";' column —2
(01] (0;) I35 =0."1) e 35 <0,
10 (0,) I 4, ,=[220202-20-22000000222-20-2-2-20000000222-2],
o= 01 (O_} I, =[11010100010000001110000000000001110],
3
10 0,) checking the equilibrium state, the activations of the
L Y dvem V4 output unit O, ,,=[1 0] has already become equal to
Tym =[0 1] the, B’ =
[11110101011000111110100011000111110], the
input test pattern ( t=4) has converged and B’ is
associated with 2= [1 0]
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BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

I Illustration of Settlement of Stable Input Patterns : Hand worked example |

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Pattern 4-
[11110101011000111110100011000111110]

Computing the net input to the output

Computing the net input to the input units (t=4)

j-’”ﬁ' 1: O—'i-"'i' rows2 24" column = 2
I =1 j'4 nef ‘1 >0,

I f.ner _ = 0—1 rowx2 X HT 2:2™ column - 2
I,=Lv1,,, ,>0.

0. . xW.

47 pauxd 2359 column

7
I35 =01, 0 35 <0,

tnet 35

»H

_;m”=[230‘022022000000' 20-
I, [1101010001000000111000000

o 2 I

-20000000222-2],

"FW
0000001110],

units (t=4)
On‘_na.‘_lz 4™ rown3s X 3507 column -
O, =170, ,>0.
0 funet_2~ I-i"'i' rown33 x H;-xxl column —22
0,,=0.20,,, ,<0.
01] (O
10| (o,
0= (©,)
01 (0;)
110/, (Os)

Since the all the input test patterns
had settled to any one of the stored
binary pattern, the iteration process of
algorithm has reached its

the
stoppage criteria.

checkmg the equilibrium state, the activations of the
output unit O, ,,=[1 0] has already become equal to
T,n,=[01] the, B’ =
[11110101011000111110100011000111110], the
input test pattern ( t=4) has converged and B’ is
associated with 2= [1 0]
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BAM for Character Mapping
BAM can be used for mapping two unrelated patterns through hetero

association.
consider two pairs of binary patterns Eights binary test patterns are given to BAM.
Here A’, B’; A”, B and A"/, B’"” are input test
A 0 00;0 00 patterns with single, double and three
00100 0011000 element errors
01010 0101000
10001 - 0001000
10001 :)‘ 0001000 A =[00100010101000110001111111000110001]
11111 0001000 B =[11110100011000111110100011000111110]
10001 0001000 A°=[10100010101000110001111111000110001]
10001 75 0001000 . B =[11110101011000111110100011000111110]
1111111 A"=[10100010101000110001110111000110001]
. 2 B =[11110101011000111110100011000110110]
0111100 A=[11100010101000110001110111000110101]
11110 1000010 B=[11110101011000111110101011000110110]
10001 0000001
10001 0000001
~> .
11110 :rv ggggg;g The result shows that all the input test
1 oo } _ 0001000 patterns are correctly mapped to its
111410 °© 0010000 ox7 associated counter part, i.e, (A,1); (B,2);
1111111 (A,1); (B,2); (A",1); (B",2); (A"",1); and
(B”",2).
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ADAPTIVE RESONANCE THEORY
(ART) NEURAL NETWORKS

Carpenter and Stephen Grosberg (1986)

“ The problems with competitive neural networks are

“ They always form stable clusters.

s They are oscillatory when more input patterns are presented.

s There is no guarantee that, as more inputs are applied to a neural
network used for clustering purpose, the weight matrix will eventually
converge and be stable.

“ The learning instability occurs because of the network’s adaptability (or
plasticity), which causes prior learning to be eroded by more recent
learning.

ART is designed to overcome the problems occurring in learning stability by a
modified type of competitive learning called adaptive resonance theory.

Types of ART networks:
>»ART-1 (1986) that can cluster only binary inputs;
>»ART-2 (1987) that can handle gray-scale inputs;
>»ART-3 (1989) that can handle analog inputs better;
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ADAPTIVE RESONANCE THEORY
(ART) NEURAL NETWORKS

ART uses a degree of expectations
called vigilance parameter.

Vigilance parameter is the user
specified value to decide the degree
of similarity essential for the input
patterns to be assigned to a cluster
unit.

Each input it is compared with the
prototype vector for a match.

If the match between the prototype
and the input vector is not
adequate, a new prototype or a
cluster unit is selected. In this way,
previous learned memories
(prototypes) are not eroded by new
learning.

Reset Layer

Input Interface
Layer (L)

Input Layer
( l-lS

The basic ART learning is an unsupervised one.
The term 'resonance’ in ART is the state of the
network, when a class of a prototype vector
very closely matches to the current input
vector, leads to a state which permits learning.
During this resonant state, the weight updation

takes place.
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ART NEURAL NETWORKS

Layers in ART

/7
0‘0

Input processing layer (L,)-
Process the inputs

Output layer (L,) with the cluster
units

Reset layer (R) - decides the
degree of similarity of patterns
placed on the same cluster by
reset mechanism.

Input processing layer
« Input layer(L,.)
« Input Interface layer(L,;)

Bottom-up weights connect input
interface layer and the output

layer(u;).

Top-down weights connect the
output layer and the interface
layer(d;).

The output layer is a competitive layer
or a recognition region where the cluster
units participates to check the closeness
of the input patterns.

The interface layer is usually called the
‘comparison region’, where it gets an
input vector and transfers it to its best
match in the recognition region.

The best match is the single neuron in
the competitive layer whose set of
weights closely matches the input
vector.

The reset layer compares the strength of
the recognition match to the vigilance
parameter.

If the vigilance threshold is met, then
the training or the updation of weights
takes place, else the firing of the
recognition neuron is inhibited until a
new input vector is applied




ARTIFICIAL NEURAL NETWORKS I

ART NEURAL NETWORKS

Operation of the ART-1

A binary input vector is presented to the input layer
Lys

The information is passed to its corresponding units in
the input interface layer L,;.

The interface units transmit the information to the
output layer L, cluster units through the bottom-up
weights .

The output units compete to become a winner.

The largest net input to the output unit usually
becomes the winner and the activation becomes 1. All
the other output units will have an activation of 0. Let
the winning cluster unit’s index is 'J’.

The information about the winner is sent from the
output layer L, to the interface layer L,s through the
top-down weights dj; .

The interface unit’s activations is 1; if a unit receives a
non-zero signal simultaneously from the input layer
L1S and the output layer L2.

Then, the norm of the vector I of the comparison
region gives the number of components for which the
top-down weight vector d;; for the winning unit J and
the input vector Sp are same as 1.

The value of I gives a evaluate the degree of

the match. The learning will occur only if the match is
acceptable to the vigilance parameter.

The updation of the weights is carried out if

W zZv
5|

(m) and total number of input vectors (P).

[ Read the number of input units (n). output units

Initialize t4,; . d ;andV . Set p=1.

p=p+1

Vv o j=1l.m.if O, % —1 . .then O; = E Ly
N i=1

get O, =0 and I, =5 ,,. Calculate ||5p || = Zn: S:
i=1

s

Find J, where O

Ir O, = —1 and all other nodes are inhibited.

then the p» i pattern cannot be clustered.

L Calculate [/, =5 . d ; and ||I|| = i Z;
i=1

NO
YES
Update weights for unit J
=<1, v /
u T ;=
o a—1+||Z| 7
NO
YES

| Stop |

Ser O; = —1 J
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BOLTZMAN MACHINE NEURAL
NETWORKS (BMNN)

1983, Geoffrey Hinton and Terry Sejnowski

stochastic recurrent neural network .

BMNN is a network of symmetrically connected, neuron-like units that make
stochastic decisions about whether to be on or off. Boltzmann machines have a
simple learning algorithm that allows them to discover interesting features that
represent complex regularities in the training data.

Hopfield BMNN
Local updation and Hebbian powerful stochastic learning
learning scheme
Deterministic updation of Stochastic updation of
activations activations
Hidden layer is absent Hidden layers is present

Symmetric Weights
Random asynchronous activation updation.
Units have no self-feedback
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BOLTZMAN MACHINE NEURAL
NETWORKS BMNN)

BMNN for Learning input and output patterns

p -~ xh\\

Every individual unit in BMNN will have any one of the two states ),/ P \
namely, ON or OFF (1 or 0 in binary representation) or (1 or -1 in Q / = U -\ P
bipolar representation). This state of the unit is a function of N/ / A ‘,{,f? “*\NO” ' b
probabilistic function of the states of its neighbouring units and /U- A \ \?’ N OO W Visible
the weights on its links to them. \ % f'—""\ § ) Lo /;'—"._\ 2 /_,' Units

g A n“fi - ,.f"‘)"ﬁ'* . F___,?
ON or OFF can be considered as the acceptance or rejection of a I'. \ Tﬁ'{“\ Va \\ " /
hypothesis of the problem. \ SV X v

The energy of any global configuration of a BMNN

E=->w,_S5S5 +> 0.5,

w,. 2 Strength of connection between units r and s ; I\ T Ao T 7[&\’ N
S, = State of the unit (0 or 1) ; 6, - Threshold of r,, unit. AR ‘l: A \-[ \/ "-\

sy - /,_/ T ~ -,

¢ ! A / \
Rejection or acceptance of a hypothesis for the is determined by I.-’ /,f \ -’;,/ \i\ ,-"({\ \
an Energy gap. . f{;’_ e __} T :,L

I._/a . \__I Il_.-' . ‘\f’ l.,/ . \"\. LI_:_I— ? . "‘-.__‘III Visible
= Z 11‘ J.S“ - a i 3 F) || "\.‘ _,II .\ 5 {'—",I .‘ll ] Linits
= r — -, \r’_?‘ﬁ/
r l:_‘l/(».\.ﬂ\\ g ()—r/)r\&* ::f)f -\.":1’,«-’ Y, \}_x

An Unit can be ON if its total net input obtained by summing up of N Tre— /=
the signals from the neighbouring units of the system exceeds its \ /
threshold. g f_,,/

| BMNN Architecture |
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RADIAL BASIS FUNCTION
NEURAL NETWORKS (RBF)

Moody and Darken, 1989;
Hush and Horne, 1993;

Wassermann, 1993

The hidden layer units incorporates the specialised
activation function called radial basis functions. These
functions produce localized, bounded, and radially
symmetric activations that decreases the distance from
the function’s centres.

1 T T T T 7T, T T T T

i
-
]
i

()

Wi

Hidden Layer
with RBF units

Output

Layer

Gaussian Radial Basis function

RBFNN Architecture
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SUPPORT VECTOR MACHINES
(SVM)

SVM is a learning algorithm typically used for classification problems.
*Text categorization

Character recognition

Image classification

Derived from statistical learning theory by Vapnik and Chervonenkis

Classification tasks based on drawing separating lines to distinguish between
objects of different class memberships are known as ‘hyper plane classifiers’.

SVM tries to minimize the upper bound of the generalization error and maximizes
the margin between a separating hyper plane and the training data.

The goal of the SVM is to optimize "generalization”, the ability to correctly classify
unseen data.

It determines a linear decision boundary in the feature space by constructing the
"optimal separating hyperplane” distinguishing the classes
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(SVM)

SUPPORT VECTOR MACHINES

Illustration : Linearly separable two class problem

* The two classes can be separated by many
decision boundaries as shown in Fig (a, b, c).

% Ambiguity to choose the one that is the best.

% The decision boundary should be as far way from
the data of both classes as possible. Therefore,
the margin 'm’ as shown in Fig (d) between the
two classes has to be maximized by an
optimization problem

% X={xyx5...,.X,} > Points to be clasified;

» yi €{1,1}---> Class lable of x;

¥ The decision boundarv should classify all points
correctly as T . :
yas y, (11' X, +b)=1L.Yi.

% w and b are the weights and biases or the
coefficients of a decision boundary

Class 1

s @ Class 2

e

Class 1

(d}

Decision Boundaries
between Two Classes

n 1 n _
Maximize w(a) =Y a, - = > @y, vx X,
1

i=l = i=l,j-

1 2 :

Minimize —|w N Ly : .

Inimize 5 H“” W ﬁafij X 1I.‘I:+.:'J _ Ct'l,l ,'I‘_,I [x.'i'flr.')-l-f}
ZJ=1 IRy 3

. N - : T "
Subject to v, (17 x; + 5)2 L.Vi Subject to .1'?.(“'} x; + b)z L Vi
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SUPPORT VECTOR MACHINES

(SVM)

Illustration : Linearly separable two class problem |

1. finding the solution to the constrained||2. The minimization problem can be
optimization problem as in equation is the || transformed into it dual as
training part of the SVM.

: . T
Maximize w(a) = 3 a—— V‘ a,ay.y XX,
2. S LAY N X,

] ) i=1 <=1 j-1
Minimize —|w (W
mnmmize ”“” Subject to v, (n"’ X+ Z)); 1. Vi

Subject to ¥ (n X; +Z>) 1.Vi

— : : 4. Many of the a; zeros. The weights w will
3. This is quadratic programming (QP) problem, || pe a linear combination of a small number of
where the optimal value of a; can be recovered || 4ata. x; with non-zero a; can be called

and w can be recovered by support vectors (SV). t; 3 indices of the 's’
SVs then w is

5. Once the training is over, a nhew set of data
can be tested by computing the equation z

wz+b=>) a, v, (,\‘,v .')+ b Decision
J= Boundaries
with a;

coefficients
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Linearly inseparable two class problem

If the set of points is inseparable by a straight line, then i 5 Class 2
an error €; can be incorporated during classification 3 / /
which belongs to a field of soft margin hyperplane . ¢
decision boundaries. “®
1. The equation for 2. The optimization j}_
boundaries incorporating €; | problem can be formulated . wix+b=1
is — T _
Minimize %”u” +CY g Class 1 e = wx+b=0
(n"':+b:1—£, yi=1 . . wxt+b=-1
- _ o Subject to 3, W', +5)21-¢,. 1 Decision Boundaries with g; for

wzt+b<l-g y;=-1 3. The minimization problem linearly inseparable classes

= 5 i can be transformed into it dual
\_ —/| as

4. w can be recovered by (—— wa)=>) e, B vaa,_\',_\‘i.\'fx;ﬂ Alternate method:

2]

= 254 S Input space > feature

. Y‘, . SubjecttoC=za; =0 space.
w=) a,y, X, High Computation burden.

j=1

i=]

Z a,y; =0 Kernel mapping.
A 2 Z
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demographic factors.

Electrical load forecasting is the process by which the electrical load at a future time
is predicted based on past values of load as well as weather, economic and

Types of Load forecasting:

Short-term = 1 hour to several days
Medium term =2 1 week to several months
Long term = 1 year to several years

Methods to forecast electrical load
Similar day approach, Regression models,
Time series, Expert systems, Fuzzy logic
and neural networks.

Factors influencing electrical load:
Time Weather End user Connected loads
and demographic and economic
conditions

Types NN for Load forecasting
Hopfield, Back propagation, Boltzmann
machine.

Most Commonly used: back propagation
neural network with continuous valued
functions and supervised learning
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Data Sources:

Electrical load data = PJM (Electricity
Power Market)
http://www.pim.com/markets-and-
operations/energy/real-time/loadhryr.aspx

Weather data - NOAA
http://wwwZ7.ncdc.noaa.qgov/CDQO/georeqi
on

The training data is split into seven groups
each containing data for a particular
weekday.

7 different neural networks are trained, 1
for each weekday, with the 7 different
training data sets.

Training period:
December 1 2010 to
December 20 2010

Testing period:
December 25 2010 to
December 31 2010



http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www7.ncdc.noaa.gov/CDO/georegion
http://www7.ncdc.noaa.gov/CDO/georegion
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Load Profile of each day during the month of December 2010
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Temperature Profile of each day during the month of December 2010
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. : s % ui : . e
Max and min temperature in December 2010 Daily precipitation in December 2010

ViR ]

o

OWnWoO wnwo

P Nax temp = Nin temp

Daily average wind speed in December 2010

Historical weather data
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MATLAB NN toolbox

. . . 2 Input Data:
Inbuilt Libraries to

implement various
types of NN such as
perceptron, feed forward
back propagation,
Hopfield, radial basis and
self-organizing map.

@ Target Data:

GUI: Graphical User
Interface helps user to
specify following
parameters Input and
target vectors, type of
network, the transfer
function of each layer, the
learning rate etc,.

In command window type % Import...
nntool

¥) Input Delay States:

#\ Neural Network/Data Manager (nntool)

'-Y: Networks

»J Output Data:

a Error Data:

¥) Layer Delay States:

4/ Help & Close

Neural Network Toolbox GUI
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MATLAB NN toolbox

Select data(from
workspace or file)
and import.

In this example, the
data is stored in
workspace. So, select
‘import from MATLAB
workspace’, select
the variable
‘input_sun’, and in
destination, click
‘Input Data’.
Similarly import
Target data

» Import to Network/Data Manager

@ Import from MATLAB workspace (no selection)

Load from disk file

input_fri
input_mon
input_sat
Input_sun
input_thu
input_tue
input_wed
output_fri
output_mon
output_sat
output_sun
output_thu
output_tue
outout wed

Name

Import As:

9 Input Data
Target Data
Initial Input States
Initial Layer States
Output Data

Error Data

|_Neural network data manager GUI

:

I

J Close
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MATLAB NN toolbox

Create Network or Data

create the neural network
architecture as well as
specify the training input
and output data

In this example, Select
Network type
‘Feed forward backprop’ for
feed forward back propagation
network.

Training function
'TRAINGD’ for gradient descent
algorithm
Performance function
MSE
No of Layers:2
Number of neurons: 90
&

Press Create

Network | Data

E=EREEE X

| GUI for creating the network |

Name

networkl

Network Pr V-}‘('l'lif:,\

Network Type:

Input data:

Target data:

Training function:
Adaption learning function:
Performance function:

Number of layers:

Number of neurons: 90

Transfer Function: TANSIG

2 Help |

Feed-forward backprop v

input v
output v
TRAINGD ~
LEARNGD ~

MSE v

] View % Restore Defaults —

"¢ Create & Close
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MATLAB NN toolbox

In nntool GUI (Fig. 3.47), click
the created network and then

In Training Info tab select the Inputs as ‘input_sun’and
Targets as 'output_sun
In training parameters tab specify the number of epochs,

click Open learning rate (Ir) and minimum gradient
1 Network: network1 e
View Tram Simulate Adapt! Reinitialize Weights View/Edit Weights
Training Info | Training Parameters
Training Data Training Results
Inputs input Outputs networkl_outputs
Errors networkl_errors

Targets output

er Delay States ZEros

“ W) Train Network 1

| GUI for Network1 |
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I MATLAB NN toolbox |

Current status of the training is shown in
the NN Training GUI

The neural network is said to be trained
when the weight values are optimized such
that the sum squared error of the training
data is below a certain threshold or the
number of validation checks have exceeded
a set point.

#\ Neural Network Training (nntraintool)

S x|

Neural Network

v Maximum epoch reached

Hidden Layer Output Layer
In o
put 5 ‘ﬁ S ﬂ utput
2 i =
60 L' Ll 24
90 24
Algorithms GUI fOI‘ the
Data Division: Random Constructed
Training: Gradient Descent
) FFBPN neural
Performance: Mean Squared Error
Derivative: Default network
Progress
Epoch: 0 | 1000 iterations | 1000
Time: [ 0:00:01 J
Performance: 0.00566 | 0.00559 | 0.00
Gradient: 0.00270 | 0.00267 | 1.00e-05
Validation Checks: 0 | 0 | 6
Plots
‘ Training State
} Regression
Plot Interval: U 1 epochs
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I MATLAB NN toolbox | % Export from Network/Data Manager - e

elect Variables

The suitability of the neural network for pad
load forecasting can be known by testing it | tetin
against data not in the training set o

test_out

networkl
networkl _outputs

To test the neural network, go to the
network properties in GUI for Network1
and simulate after selecting 'test_in_sun’ as
Inputs and 'test_out_sun’as Targets.

networkl_errors

The output of the simulation will be stored
in the nntool GUI under the Output Data
section.

Select one or more variables. Then [Export] the vanables
to the MATLAB workspace or [Save] them to a disk file

Select All Select None & Close

Click Export button in nntool GUI to display
the Export from Network/Data Manager
window. Select the simulated output data
variable and press Export. The data will now
be saved to the workspace.
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I MATLAB NN toolbox |

The graph in shows the variation actual Vs expected load for 24 hours on 26
December 2010, which is a Sunday.

Load (MW) Actual vs Predicted Load for December 26, 2010
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