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CHAPTER- 3 

ARTIFICIAL NEURAL NETWORKS 

    -Second Generation 
 Explain the Backpropagation in Neural Networks 
 Learn the working of Kohonnen Neural Networks 
 Understand the concept of Learning Vector Quantization (LVQ) 

Network 
 Get familiar with Hamming Neural Networks and Hopfield Neural 

Networks 
 Explain the fundamentals of Bidirectional Associative Memory 
 Elaborate on Adaptive Resonance Theory (ART) Networks 
 Discuss the functioning of Boltzmann Machine  
 Understand concepts of Radial Basis Neural Networks and Support 

Vector Machines 
 Conduct Electrical Load Forecasting using MatLab Neural Network 

Toolbox 



ORGANIZATION 

ARTIFICIAL NEURAL NETWORKS II 

BIDIRECTIONAL ASSOCIATIVE MEMORY 

ADAPTIVE RESONANCE THEORY NEURAL NETWORKS 

BOLTZMAN MACHINE NEURAL NETWORKS 

RADIAL BASIS FUNCTION NEURAL NETWORKS 

SUPPORT VECTOR MACHINES  

ELECTRICAL LOAD FORECASTING USING MATLAB NEURAL NETWORK 
TOOLBOX 

INTRODUCTION TO II GENERATION NEURAL NETWORK 

LEARNING VECTOR QUANTIZATION 

KOHONEN NEURAL NETWORK  

CLASSIFICATION OF ARTIFICIAL NEURAL NETWORK 

HAMMING NEURAL NETWORK 

HOPFIELD NEURAL NETWORK 



INTRODUCTION TO SECOND 
GENERATION NEURAL NETWORK 

 Neurons of the second generation use continuous 
activation function. 

 Suitable for analog in and analog out applications. 
 

 Example activation functions  
 Sigmoid . 
 Hyperbolic tangent. 

 
 Examples neural networks. 

 Feed-forward neural networks. 
 Recurrent neural networks. 

 
 Requires fewer neurons than a network of the first 

generation 
 Can approximate any analog function. 

ARTIFICIAL NEURAL NETWORKS II 



BACKPROPAGATION NEURAL 
NETWORKS 

Consider a simple neuron 
 Neuron has a summing junction 

and activation function. 
 Any non linear function which 

differentiable every where and 
increases everywhere with sum 
can be used as activation function. 

 Examples: 
 Logistic function. 
 Arc tangent function. 
 Hyperbolic tangent activation 

function. 
 These activation function makes 

the multilayer network to have 
greater representational power 
than single layer network only 
when non-linearity  is introduced. 
 

ARTIFICIAL NEURAL NETWORKS II 

 Back propagation is a systematic 
method for training multiple layer 
ANN 

 It is a generalization of Widrow-Hoff 
error correction rule. 

 80% of ANN applications uses back 
propagation. 

A simple neuron with many inputs 



BACKPROPAGATION NEURAL 
NETWORKS 

The input to the activation function is sum 
which is defined by the following equation  
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Logistic function monotonically 
increases from a lower limit (0 or -
1) to an upper limit (+1) as sum 

increases.  In which values vary 
between 0 and 1, with a value of 
0.5 when I is zero 
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Activation Function: Arc Tangent 
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Need of Hidden layers 

WEIGHTS 

 A network with only two layers 
(input and output) can only 
represent the input with whatever 
representation already exists in the 
input data. 
 

 If the data’s are discontinuous or 
non-linearly separable, the innate 
representation is inconsistent, and 
the mapping cannot be learned using 
two layers(Input & Output). 
 

 Therefore, hidden layer(s) are used 
between input and output layers. 

INPUT HIDDEN OUTPUT 

 Weights connects unit(neuron) in 
one layer only to those in the next 
higher layer. 
 

 The output of the unit is scaled by 
the value of the connecting weight, 
and it is fed forward to provide a 
portion of the activation for the units 
in the next higher layer 
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 The training 
objective is to 
adjust the 
weights so that 
the application of 
a set of inputs 
produces the 
desired outputs. 

 Back propagation 
can be applied to 
an artificial 
neural network 
with any number 
of hidden layers. 

 Consider a three-
layer network 
where all 
activation 
functions are 
logistic functions 
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 The network is usually trained with a large number of input-output pairs. 
1. Generate weights randomly to small random values (both positive and 

negative) to ensure that the network is not saturated by large values 
of weights  (if all weights start at equal values, and the desired 
performance requires unequal weights, the network would not train at 
all). 

2. Choose a training pair from the training set. 
3. Apply the input vector to network input. 
4. Calculate the network output. 
5. Calculate the error, the difference between the network output and 

the desired output. 
6. Step 6: Adjust the weights of the network in a way that minimizes this 

error.   
7. Repeat steps 2-6 for each pair of input-output in the training set until 

the error for the entire system is acceptably low. 
 

Training procedure. 
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 Back propagation neural network training involves two passes.   
 
 In the forward pass, the input signals moves forward from the network 

input to the output.  
 
 In the backward pass, the calculated error signals propagate backward 

through the network, where they are used to adjust the weights.  
 
 In the forward pass, the calculation of the output is carried out, layer by 

layer, in the forward direction.  The output of one layer is the input to the 
next layer. 
 

 In the reverse pass,  
 The weights of the output neuron layer are adjusted first since the 

target value of each output neuron is available to guide the adjustment 
of the associated weights, using the delta rule.   

 Next, we adjust the weights of the middle layers. As the middle layer 
neurons have no target values, it makes the problem complex 

Forward pass  and backward pass. 
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 The number of hidden units depends on the number of input units. 
 

“Any function of n variables may be represented by the superposition of a 
set of 2n+1 univariate functions to derive the upper bound for the required 
number of hidden units as one greater than twice the number of input 
units”. 

 Kolomogorov’s theorem      
  
1. Never choose h to be more than twice the number of input units. 
2. You can load p patterns of I elements into log2p hidden units. So never use 

more. If we need good generalization, use considerably less. 
3. Ensure that we must have at least 1/e times as many training examples as 

we have weights in our network. 
4. Feature extraction requires fewer hidden units than inputs. 
5. Learning many examples of disjointed inputs requires more hidden units 

than inputs. 
6. The number of hidden units required for a classification task increases with 

the number of classes in the task. Large networks require longer training 
times. 

Selection of number of hidden units. 
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 i, j, k Input layer, Hidden layer output layer. 
 h, p, q Input neuron, Hidden neuron, Output neuron. 
 Fpj Output of neuron ‘p’ in hidden layer ‘j’. 
 Fqk Output of neuron ‘q’ in hidden layer ‘k’. 
 Whp,j Weight connecting input neuron ‘h’  and hidden 

neuron ‘p’  in the hidden layer ‘j’. 
 Wpq,k Weight connecting hidden  neuron ‘p’  and output 

neuron ‘q’  in the output  layer ‘k’. 
 Dp Target output value of neuron ‘q’. 

Calculation of Weights for Output Layer Neurons 

Representation of neurons for output layer neurons weight  
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 The squared error signal ‘E’ is produced by calculating the  
the difference between Dq and Oq (fq,k). 

Calculation of Weights for Output Layer Neurons 
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Where ηp,q is the constant of proportionality called ‘learning rate’ 
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Calculation of Weights for Hidden Layer Neurons 

 In the hidden layer of the network (say neuron ‘p’), there is no 
specified desired response for the neuron. 

 The error signal for a hidden neuron would have to be determined 
recursively in terms of the error signals of all the neurons to 
which the hidden neuron is directly connected.  

 Since the hidden layers have no target vectors, the problem of 
adjusting the weights of the hidden layers is a major issue. 

 Back propagation trains hidden layers by propagating the 
adjusted error back through the network, layer by layer, adjusting 
the weight of each layer as it goes. 

 The equations for the hidden layer are the same as for the output 
layer except that the error term  must be generated without a 
target vector.  

 Weight of neuron in the middle layer includes the contributions 
from the errors in each neuron in the output layer to which it is 
connected.   
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Calculation of Weights for Hidden Layer Neurons 

 The procedure for calculating Whp,j is substantially the same as calculating 
Wpq,k.  Consider, the neuron (p) at layer ‘j’  is connected to ‘r’ number of 
neurons in output  layer ‘k’. 

 Then the weight at iteration ‘t=t+1’ is given by  
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Factors influencing Back Propagation Training 

The training time can be reduced by using  
Bias: Networks with biases can represent relationships between inputs and 
outputs more easily than networks without biases. Adding a bias (a + 1 input with 
a training weight, which can be either positive or negative) to each neuron is 
usually desirable to offset the origin of the activation function. The weight of the 
bias is trainable similar to weight except that the input is always +1. 
 
Momentum: The use of momentum enhances the stability of the training process. 
 Momentum is used to keep the training process going in the same general 
direction analogous to the way that momentum of a moving object behaves.  
In back propagation with momentum, the weight change is a combination of the 
current gradient and the previous gradient.  
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Numerical Example 1: 

Consider a neural network where,  
 All neurons have same logistic function with s=1; 
 Learning rate of all neurons are 1. 
The weight and bias updation are as follows, 

  

Weight updation for a simple back propagation 
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Numerical Example 1: 

The change in weights and bias values from output layer to hidden layer is given 
by the following equations  
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The change in weights and bias values from hidden layer to input layer is given by 
the following equations  
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Numerical Example 1: 

The subscripts h, p, q are the index of input, hidden and output layer. 
m, n, and r are number of neurons in input, hidden and output layer. 
 Here, m = 2, n = 2 , r=1; Assume µ =0; 

  

Training pattern 

I1   I2 

0.10 0.20 

0.20 0.30 

0.30 0.40 

0.40 0.50 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 1 

 Hidden layer units weighted sum and output 
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Output layer unit weighted sum and output 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 1 

 

2.0,1.0 21  II
Change in weights in the output layer 
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Change in bias in the output layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 1 

 
Change in weights in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 1 

 Change in bias in the input layer 
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New weights in the output layer 
 
 
 
 

New bias in the output layer 
 
 
 

New weights in the input layer 

New bias in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 2 

 Hidden layer units weighted sum and output 
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Output layer unit weighted sum and output 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 2 
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Change in weights in the output layer 
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Change in bias in the output layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 2 

 
Change in weights in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 2 

 Change in bias in the input layer 
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New weights in the output layer 
 
 
 
 

New bias in the output layer 
 
 
 

New weights in the input layer 

New bias in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 3 

 Hidden layer units weighted sum and output 
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Output layer unit weighted sum and output 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 3 

 Change in weights in the output layer 
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Change in bias in the output layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 3 

 
Change in weights in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 3 

 Change in bias in the input layer 
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New weights in the output layer 
 
 
 
 

New bias in the output layer 
 
 
 

New weights in the input layer 

New bias in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 4 

 Hidden layer units weighted sum and output 
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Output layer unit weighted sum and output 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 4 

 
Change in weights in the output layer 
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Change in bias in the output layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 4 

 
Change in weights in the input layer 
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Numerical Example 1: 

  

Epoch Number 1 /  

Pattern Number 4 

 Change in bias in the input layer 
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New weights in the output layer 
 
 
 
 

New bias in the output layer 
 
 
 

New weights in the input layer 

New bias in the input layer 
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 Sum Squared Error (Epoch Number 1) 
 
 
 
 
 
 
 
 
 
 

   

 Sum Squared Error (Epoch Number 1) 
The training should be carried out for more number of epochs to reduce the sum squared error, 
and thereby the accuracy of the test output will be improved.  
 
 
 
 
 
 
 
 
 
 

After training for 10,000 epochs with a sum squared error of 7.6902e-004. The final weights and 
bias values that are obtained after training is given below. 
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After the training is over, the following are the results 
 
 
 
 
 
 
 
 
 
 

   

Test input Desired output Actual/Predicted output 

   

0.1 0.2 0.3000 0.3071 

0.2 0.3 0.5000 0.4855 

0.3 0.4 0.7000 0.7162 

0.4 0.5 0.9000 0.8878 

0.4 0.3 0.7000 0.7159 

0.2 0.5 0.7000 0.7165 

0.18 0.32 0.5000 0.4856 

0.367 0.438 0.8050 0.8196 

0.463 0.333 0.7960 0.8117 

0.345 0.543 0.8880 0.8806 

During the testing mode, the test inputs are given from the input patterns 
already present in the training set, and the output results obtained are closer to 
the desired one.  

After training, Even if we give a typical or similar kind of input pattern not 
present in the training set, the neural network is capable of giving an output 
which is closer to the desired target pattern. 

This shows the adaptability of the neural network for similar kind of input 
patterns that are not present in the training process.  
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Character recognition is a trivial task for humans, however to make a computer 
program that does character recognition is extremely difficult.  
 
The main reason may be the many sources of variability and high level of 
abstraction.  
  
Variability 
Noise for example, consists of random changes to a pattern, particularly near the 
edges and a character with much noise may be interpreted as a completely different 
character by a computer program.  
 
High level of abstraction 
There are thousands styles of type in common use and a character recognition 
program must recognize most of these to be of any use.  
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Character Recognition using Back propagation Neural Network 

  

   

Alphabets from A to Z are used for training, and have been tested with error 
incorporated in the test pattern. The alphabet is represented using a 7 X 5 matrix of 
35 binary bits as shown below. 
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Character Recognition using Back propagation Neural Network 

  

   

 
 
 
 
 
 
 
 
 
 

The forward back propagation neural network is designed with 35 
input and output units. The training set consists of 26 patterns. 
 

Sigmoidal logistic function is used for all neurons, during the 
testing mode, the actual output of the neural network is passed 
through a binary logic to get binary output.  
 

Once the training is carried of successful with less sum squared 
error, the network is tested to recognize the patterns with and 
without error.  
 

The accuracy of the predicted output depends upon the increased 
epochs of training and selection of suitable network parameters. 
However, there are limitations that correspond to back propagation 
neural network and the limitations of the learning rules that used 
for training.  
 

The accuracy of the output can be increased by increasing the 
number of elements in the training patterns since they should have 
at least a minimal difference between individual training patterns. 
This will enable the network to generalize and train effectively.    
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In 1989, Finnish professor Teuvo Kohonen  had developed a topological 
structure analogous to a typical neural network with competitive units or 
cluster units in network layers. This topology uses an unsupervised learning 
procedure to produce a 2-dimensional discretized representation of the input 
space of the training samples, called a map. Therefore, this network is called 
‘self-organizing map’ or simply a ‘Kohonen neural network’.  

Kohonen neural network creates a competition among cluster units similar to a 
property observed in the brain but not in other artificial neural networks. 

Clustering progresses by checking the closeness of the input patterns with the 
weight vector associated with each of the cluster units. A cluster unit is 
considered as a winner, if the Euclidean distance between the weight vector 
associated with it and the given input pattern is the minimum when compared 
among the other neighbour hood cluster units.  

The weights associated with the winner cluster unit and neighbour cluster units 
are updated. The neighbours are the cluster units nearer to the winner cluster 
unit and can be considered based on a measure of geometrical boundary.  

http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen
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Step1: Initialize the random weight values. Give the topological parameter R 
(geometric measure of the neighborhood boundary), and set the learning rate  
within . 
Step2: For each input pattern Ih training pair compute the Euculidean distance for 
each output cluster unit k and Get the winner cluster unit index K for which the 
ED is minimum. 
 
 
 
 
 
 
Step3: Update the weights for all the k units within the neighbourhood boundary 
of the winner K. Then, update the learning rate. Decrease the topological 
parameter R at specified times after the completion of an epoch. 
 
 
 
 
Repeat Steps 2,3 till the maximum number of epochs are reached. 
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Step1: Initialize the random weight values. Give the topological parameter R 
(geometric measure of the neighborhood boundary), and set the learning rate  
within . 
Step2: For each input pattern Ih training pair compute the Euculidean distance for 
each output cluster unit k and Get the winner cluster unit index K for which the 
ED is minimum. 
 
 
 
 
 
 
Step3: Update the weights for all the k units within the neighbourhood boundary 
of the winner K. Then, update the learning rate. Decrease the topological 
parameter R at specified times after the completion of an epoch. 
 
 
 
 
Repeat Steps 2,3 till the maximum number of epochs are reached. 
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Illustration on Clustering of Bipolar Input Patterns 

Cluster 4 bipolar patterns into 2 clusters 
 
Consider  
n = 4 
m = 2  
Topological parameter R = 0,  
learning rate (n)=0.9  
geometrically decrease 0.5 times for every epoch.  
 
The input pattern(I),  
Initial Weights(W) . 



KOHONEN NEURAL NETWORK 
(KNN) 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTIFICIAL NEURAL NETWORKS II 

  

   

Illustration on Clustering of Bipolar Input Patterns 

Calculation of Euclidean Distance 
 
 
 
 
 
 
 
 
 
The winner cluster unit is K = 2 because ED is 
minimum. Therefore, the weights connected to 
the winner cluster unit 2 should be updated 
  
 

Epoch Number 1   / 

 Pattern Number 1 

 
Weight Updation 
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Illustration on Clustering of Bipolar Input Patterns 

Calculation of Euclidean Distance 
 
 
 
 
 
 
 
 
 
The winner cluster unit is K = 1 because ED is 
minimum. Therefore, the weights connected to the 
winner cluster unit 1 should be updated 
  
 

Epoch Number 1   / 

 Pattern Number 2 

 
Weight Updation 
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Illustration on Clustering of Bipolar Input Patterns 

Calculation of Euclidean Distance 
 
 
 
 
 
 
 
 
 
The winner cluster unit is K = 1 because ED is 
minimum. Therefore, the weights connected to the 
winner cluster unit 1 should be updated 
  
 

Epoch Number 1   / 

 Pattern Number 3 

 
Weight Updation 
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Illustration on Clustering of Bipolar Input Patterns 

Calculation of Euclidean Distance 
 
 
 
 
 
 
 
 
 
The winner cluster unit is K = 1 because ED is 
minimum. Therefore, the weights connected to the 
winner cluster unit 1 should be updated 
  
 

Epoch Number 1   / 

 Pattern Number 4 

 
Weight Updation 
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Clustering of Numerical Characters 

 This application aims to cluster 25 binary patterns representing numerals 

from 1 to 9. They are represented by 9 X 7 matrix format.  

 The objective is to cluster the 25 patterns into 9 groups. Each of the input 

patterns are represented as binary input vectors . 

 Let, n = 25, m = 2, initial topological parameter R = 4 . Let the learning rate 

be 0.9  and will geometrically decrease 0.5 times  for every epoch.  

 The topological parameter R (geometrical radius) will be decreased by 

subtracting a small value of 0.2 for every epoch. The value of R should be 

rounded off to obtain an integer value.  
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Clustering of Numerical Characters 

 Sample input test pattern for clustering 
 

 

 Results: Clusters 
 
 
 
 

 The simulation is conducted for 10 trial runs and frequency of occurrence of 
clustered groups . 
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Learning Vector Quantization (LVQ) 
network is a supervised neural 
network where the input vectors are 
trained for a specific class or group 
already mapped in the training set.  

The architecture of the LVQ is similar 
to the Kohonen neural network where 
the number of output units is equal to 
the number of available classes, but 
without a topological structure which 
is assumed for the output units.  

The weight updation is carried out only 
for the weight vector for which the 
input vector corresponds to the output 
unit. A reference input vector is 
selected for a specific class.  

 
Architecture of LVQ 
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1. Initialize the input vector as reference vector   i.e., initial weight values and set the 
learning rate(η)  within 0.1 ≤n* η ≤1. 

2. For each input pattern Ih training pair compute the Euclidean distance between input 
vector and Weight vector for each output cluster unit k. Find the unit index K for 
which the ED is minimum. 
 
 
 
 

3. Update the weights for kth output unit 

  If T=Ok,  
   
 
 

 If T≠Ok,  
  
4. Reduce the learning rate 

 
 Repeat steps 2,3 & 4 till the maximum number of epochs is reached  

 
 

 

 

Steps 
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Let, n = 4 and m = 2 and learning rate be 
η=0.9 and will geometrically decrease 0.5 
times  for every epoch. 

 

Initialize the input vector as reference 
vector   i.e., initial weight values and set 
the learning rate(η)  within 0.1 ≤n* η ≤1.  

 

Arbitrarily select, the reference vector. 

Here, I1 is selected as reference vector for 
the first cluster and I2 is selected as 
reference vector for the second cluster. 

 

 

Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 1 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
Output unit Class is 1. i.e. O2=1 ED 
(1) is minimum.  
Target Class  is 1, i.e. T =1.  
 
Since T = O2, the weights connected 
to cluster unit 1 should be updated. 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 2 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
 
Output unit Class 2. i.e. O2=2 ED (1) 
is minimum.  
Target Class  is 2, i.e. T =2.  
 
Since T = O2, the weights connected 
to cluster unit 1 should be updated. 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 3 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
 
ED (1)=ED(2); T=2; 
 
Weights corresponding to O1 and O2 
are updated. 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 4 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
 
ED(2) is minimum O=2; T=1; 
 
T ≠ O2, Weights corresponding to O2 
are updated. 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 5 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
 
ED(1) is minimum O=1; T=1; 
 
T =  O1 , 
  
The weights connected to cluster unit 
1 should be updated 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

Epoch Number 1 

Pattern Number 6 

 
Calculation of Euclidean Distance 
 
 
 
 
(Cluster k=1) 
 
 
 
(Cluster k=2) 
 
 
 
 
ED(1) is minimum O=1; T=2; 
 
T ≠ O1; 
 The weights connected to cluster unit 
1 should be updated 
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Clustering of Bipolar Input Patterns in LVQ 
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters 

RESULTS 

At the second epoch, the learning rate 
will geometrically decrease 0.5 times  for 
every epoch. Therefore, the learning rate 
will be 0.45 for the starting of the second 
epoch. 
 
After 1000 epochs, the learning rate and 
weights are found to be 
 

 

302-8.3994e

 
 
 

Pattern 1- (1 1 1 -1), Pattern 4- 
(-1 -1 1 1) and Pattern 5- (-1 1 1 
1) belongs to the first output 
unit.  
 
Pattern 2- (-1 -1 -1 1), Pattern 3- 
(1 -1 -1 -1) and Pattern 6- (-1 1 -
1 -1) belongs to the second 
output unit. 
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Classification of Numerical Characters  

This application aims cluster 25 binary patterns representing numerals from 1 
to 9 using Matlab. 
Numerals are represented by 9 X 7 matrix format. Some sample numeral 
patterns are given below. 

Class 1 2 3 4 5 6 7 8 9 

Patterns 1,2,3 6 5,7,8 10,11, 12 9,13,14, 16 15 
18, 

19,20 
17,22 4,21, 23, 24, 25 

Numeral 
Pattern 

No 

1 1,2,3 

2 4,5,6 

3 7,8,9 

4 10,11,12 

5 13,14 

6 15,16,17 

7 18,19,20 

8 21,22 

9 23,24,25 

Pattern No. 1 (1a) ,2 (1b), 3(1c) 

representing numeral 1 

 

PatternNo.22(8b) representing numeral 8 

Pattern No. 23(9a), 24(9b) representing 

numeral 9 

Here, n = 25. Let, m = 2, η=0.9 and decreases 0.5 times at each epoch. The 
simulation of 1,000 epochs are carried out and the results are 

 

Similar to patterns at 

left, various patterns 

representing 

numerals are used 

and the pattern 

number of the 

numerals are given  

in Table . 
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Lippmann (1987)  modelled a two layer 
bipolar network called Hamming neural 
network. The first layer is the Hamming 
net and the second layer is the MAXNET.  
 
The first layer is a feed forward type 
network which classifies the input 
patterns based on minimum Hamming 
distance. The Hamming distance (HD) 
between any two vectors is the number 
of components in which the vectors 
differ.  
 
The Hamming net uses MAXNET in the 
second layer as a subnet to find the unit 
with the largest net input. The second 
layer operates as recurrent recall 
network which suppresses all the outputs 
except the initially obtained maximum 
output of the first layer.  

Architecture of HNN 
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Let I (1-11111) and S (11-1-111) be the two fixed length bipolar vectors . 
Hamming distance HD (I, S) is equal to 3.  
The scalar product of A and B is 

  ItS= [n-HD (I, S)]-HD (I, S)   

   
If n is the number of components in the vectors, then [n-HD (I, S)] are the 
number of components in which the vectors agree. 

                              ItS = n-2HD (I, S) 
 
Let I be the input vector and S be the vector that represents the patterns placed 
on a cluster.  For a two layer classifier of bipolar vector, the strongest response 
of a neuron indicates that the minimum HD exists between the two vectors I 
and S.  For setting up the weights and bias, the above equation is written as: 

                           HD (I, S) = It .S/2 +n/2 
 
If the weights are fixed to one half of the standard vector S/2 and bias to n/2, 
then the network will be able to find the input vector I, closest to the standard 
vector S. This is done by finding the output unit with the largest net input.  
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The two standard bipolar patterns are S(1) = (1 1 -1 -1 1 1) and S(2) = (-1 -1 1 -1 1 1). 
Here n= 6,  m= 2 and I= 4. 
The 4 bipolar input patterns (I), initial weights (W) and bias (B) are 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration on Finding the Best Match with Standard Vector: 
Hand worked example: 
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns 

mjWIBO
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The net input to each output unit of 
the first layer for all the 4 input 
patterns is calculated from  
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Computation in the first layer 
 
 
 
  
Computation in the second layer (MAXNET) 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Illustration on Finding the Best Match with Standard Vector: 
Hand worked example: 
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns 

Pattern 1 
(1 1 1 -1 1 1) 

0)(
,04580.0
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sumf
sum

The non-zero input 
unit j=1 of the 
MAXNET is the winner 
 
(1 1 1 -1 1 1) is closer 
to    S(1) = (1 1 -1 -1 
1 1). 
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Illustration on Finding the Best Match with Standard Vector: 
Hand worked example: 
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns 

Pattern 2 
(-1 -1 -1 1 1 -1) 

The non-zero input unit 
j=2 of the MAXNET is 
the winner 
 
I2=(-1 -1 -1 1 1 -1)  
is closer to    
S(2) = (-1 -1 1 -1 1 1). 
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Illustration on Finding the Best Match with Standard Vector: 
Hand worked example: 
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns 

Pattern 3 
(1 -1 -1 -1 1 1) 

The non-zero input unit 
j=1 of the MAXNET is 
the winner. 
I3(1 -1 -1 -1 1 1) 
is closer to    
S(1) = (1 1 -1 -1 1 1). 
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Illustration on Finding the Best Match with Standard Vector: 
Hand worked example: 
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns 

Pattern 4 
(-1 -1 1 1 1 -1) 

The non-zero input unit 
j=2 of the MAXNET is 
the winner. 
I4 (-1 -1 1 1 1 -1) 
icloser to  
S(2) = (-1 -1 1 -1 1 1). 
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This application aims to recognize 
the closest match of the input test 
pattern of an alphabet with an 
error. Here, the representation of 
an alphabet is by a matrix of 7 X 5 
bipolar elements.  
 
Though Hamming neural network 
can be used for clustering of 
patterns, this application tries to 
recognize the input patterns with 
an error and finds the closest 
match. Here, n = 35, m = 26 
(Number of cluster units), and T = 
26 (Number of input patterns). 
 
 

Character Recognition through Clustering of Numerical Characters 

Simulation Results of HNN 
for Character Recognition 
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John Hopfield -1982- recurrent artificial 
neural network 
 
It is used as a content-addressable 
memory systems with binary threshold 
units. 
 
A content-addressable memory systems 
allows the recall of data on the degree of 
similarity between the input patterns and 
the patterns stored in memory. 
 
Hopfield neural networks is an example 
of Associative memory neural networks 
(AMNNs). 
 
AMNNs are single-layer nets in which the 
weights are determined for the network 
to store a set of pattern associations.  
 
 
 

Hopfield Neural Network 

In the Hopfield network, only one unit 
updates it activations at a time based 
on the signals it receives from each 
other unit. Also, each unit continues to 
receive an external signal in addition to 
the signal from other units in the net.  
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Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard 
binary patterns S(1) = (1 1 1 1 0 0) and S(2) = (0 1 1 1 1 1).  
 
 

Illustration of Settlement of Stable Input Patterns: Hand worked example 

Here, P = 2, T = 3 and n = 6 
 

Initialization of weights as per Hebb rule for binary numbers 
 
The weight of the binary patterns are 
 
 
 
       
 
If the patterns to be handled are bipolar, then the weights are, 
 
 
 
 
                                                
Here the weights are initialized as, 
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Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard 
binary patterns S(1) = (1 1 1 1 0 0) and S(2) = (0 1 1 1 1 1).  
 
 

Illustration of Settlement of Stable Input Patterns: Hand worked example 
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Pattern 1 
(1 1 1 0 1 0)  

Test 3 binary input patterns and find the patterns that settles or 
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0) 
and S(2) = (0 1 1 1 1 1).  
 
 

Illustration of Settlement of Stable Input Patterns: Hand worked example 

Let the order of the asynchronous updation of units be [4 3 6 5 1 2].  
Computing the net input to the units (k=1)  
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Pattern 2 
(0 1 0 1 1 1)  

Test 3 binary input patterns and find the patterns that settles or 
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0) 
and S(2) = (0 1 1 1 1 1).  
 
 

Illustration of Settlement of Stable Input Patterns: Hand worked example 

Let the order of the asynchronous updation of units be [3 1 6 4 2 5].  
Computing the net input to the units (k=2)  
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Pattern 3 
(0 0 1 1 1 1)  

Test 3 binary input patterns and find the patterns that settles or 
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0) 
and S(2) = (0 1 1 1 1 1).  
 
 

Illustration of Settlement of Stable Input Patterns: Hand worked example 

Let the order of the asynchronous updation of units be [4 2 1 6 5 3].  
Computing the net input to the units (k=3)  
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 The Hopfield network can be used for 
pattern recognition to identify the 
standard pattern associated with the input 
test pattern.  
 

 Here, 3 alphabets (A, B & C) are the 
standard patterns. 
 

 The representation of an alphabet is by a 
matrix of 7X5 binary elements.  

 

Character Recognition through Stabilization of Input Test Patterns  
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Simulation Results for Test Input Patterns with Single Element Errors  

Character Recognition through Stabilization of Input Test Patterns  
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Simulation Results  

Character Recognition through Stabilization of Input Test Patterns  
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 Bart Kosko -1988 

 BAM has the properties of two-layer non-
linear feedback neural networks  

 Heteroassociative information is encoded 
in a BAM by summing correlation weights 
matrices obtained from the associative 
pairs of the binary or bipolar patterns. The 
architecture of the BAM consists of two 
layers of neurons, connected by bi-
directional weights  

 The weights of the BAM are initialized 
based on the Hebb rule. 

BAM Architecture 



 For the bipolar vectors,  The activation functions of the and 
layers for the binary vectors are Ith  
and Oth  

 The bidirectional weights of for the P 
paired bipolar patterns are  

BIDIRECTIONAL ASSOCIATIVE 
MEMORY (BAM)  
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 Suppose s(h) and T(k) are associated 
P paired patterns. 

 The bidirectional weights for the P 
paired binary patterns are  
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Illustration of Settlement of Stable Input Patterns 

 Standard Binary Patterns 

 

 Binary test patterns  

 

 

 Here, P = 2, N = 4, n = 35 and m = 2.  

 Store 2 paired binary standard patterns in BAM and test 4 binary test 
patterns.  
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Illustration of Settlement of Stable Input Patterns: Hand worked example 

 Activation of the and layer of BAM Ith Oth 

 Store 2 paired binary standard patterns in BAM and test 4 binary test 
patterns.  

 The P paired binary patterns are stored as weights using Hebb rule 

 The weights are initialized  
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Illustration of Settlement of Stable Input Patterns : Hand worked example 

Pattern 1- 
[00100010101000110001111111000
110001]  
Computing the net input to the output 
units (t=1)  

 Store 2 paired binary standard 
patterns in BAM and test 4 
binary test patterns.  

 Computing the net input to the input units (t=1)  

checking the equilibrium state, the activations of the 
output unit O1,m=[0 1] has already become equal to 
T1,m= [ 0 1] the , A = 
[00100010101000110001111111000110001], the 
input test pattern ( t=1) has converged and A is 
associated with 1= [01] ] 

Pattern 1- 
[00100010101000110001111111000110001]  
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Illustration of Settlement of Stable Input Patterns : Hand worked example 

Computing the net input to the output 
units (t=2)  

Store 2 paired binary standard 
patterns in BAM and test 4 binary 
test patterns.  

Computing the net input to the input units (t=2)  

checking the equilibrium state, the activations of the 
output unit O2,m=[1 0] has already become equal to 
T2,m =[1 0] the , B = 
[11110100011000111110100011000111110], the 
input test pattern ( t=2) has converged and B is 
associated with 2= [1 0] 

 

Pattern 2- 
[11110100011000111110100011000111110] 
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Illustration of Settlement of Stable Input Patterns : Hand worked example 

Store 2 paired binary standard 
patterns in BAM and test 4 binary 
test patterns.  

Computing the net input to the input units (t=3)  

checking the equilibrium state, the activations of the 
output unit O3,m=[0 1] has already become equal to 
T3,m =[0 1] the , A’ = 
[10100010101000110001111111000110001], the 
input test pattern ( t=3) has converged and A’  is 
associated with 1= [0 1] 

 

Pattern 3- 
[10100010101000110001111111000110001]  

Computing the net input to the output 
units (t=3)  
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Illustration of Settlement of Stable Input Patterns : Hand worked example 

Store 2 paired binary standard 
patterns in BAM and test 4 binary 
test patterns.  

Computing the net input to the input units (t=4)  

checking the equilibrium state, the activations of the 
output unit O4,m=[1 0] has already become equal to 
T4,m =[0 1] the , B’ = 
[11110101011000111110100011000111110], the 
input test pattern ( t=4) has converged and B’  is 
associated with 2= [1 0] 

 

Pattern 4- 
[11110101011000111110100011000111110]  

Computing the net input to the output 
units (t=4)  
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Illustration of Settlement of Stable Input Patterns : Hand worked example 

Store 2 paired binary standard 
patterns in BAM and test 4 binary 
test patterns.  

Computing the net input to the input units (t=4)  

checking the equilibrium state, the activations of the 
output unit O4,m=[1 0] has already become equal to 
T4,m =[0 1] the , B’ = 
[11110101011000111110100011000111110], the 
input test pattern ( t=4) has converged and B’  is 
associated with 2= [1 0] 

 

Pattern 4- 
[11110101011000111110100011000111110]  

Computing the net input to the output 
units (t=4)  

Since the all the input test patterns 
had settled to any one of the stored 
binary pattern, the iteration process of 
the algorithm has reached its 
stoppage criteria.  
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BAM for Character Mapping 
BAM can be used for mapping two unrelated patterns through hetero 
association. 

consider two pairs of binary patterns 

 

 

Eights binary test patterns are given to BAM. 
Here A’, B’; A’’, B’’ and A’’’, B’’’ are input test 
patterns with single, double and three 
element errors 

The result shows that all the input test 
patterns are correctly mapped to its 
associated counter part, i.e, (A,1); (B,2); 
(A’,1); (B’,2); (A’’,1); (B’’,2); (A’’’,1); and 
(B’’’,2). 
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Carpenter and Stephen Grosberg (1986) 
The problems with competitive neural networks are  
They always form stable clusters.  
They are oscillatory when more input patterns are presented.  
There is no guarantee that, as more inputs are applied to a neural 

network used for clustering purpose, the weight matrix will eventually 
converge and be stable.  

The learning instability occurs because of the network’s adaptability (or 
plasticity), which causes prior learning to be eroded by more recent 
learning. 
 

ART is designed to overcome the problems occurring in learning stability by a 
modified type of competitive learning called adaptive resonance theory. 
 
Types of ART networks: 

ART-1 (1986) that can cluster only binary inputs;  
ART-2 (1987) that can handle gray-scale inputs; 
ART-3 (1989) that can handle analog inputs better; 



ADAPTIVE RESONANCE THEORY 
(ART) NEURAL NETWORKS 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTIFICIAL NEURAL NETWORKS II 

  

   

ART uses a degree of expectations 
called vigilance parameter.  

 

Vigilance parameter is the user 
specified value to decide the degree 
of similarity essential for the input 
patterns to be assigned to a cluster 
unit. 

 

Each input it is compared with the 
prototype vector for a match. 

 

If the match between the prototype 
and the input vector is not 
adequate, a new prototype or a 
cluster unit is selected. In this way, 
previous learned memories 
(prototypes) are not eroded by new 
learning. 

The basic ART learning is an unsupervised one. 
The term ‘resonance’ in ART is the state of the 
network, when a class of a prototype vector 
very closely matches to the current input 
vector, leads to a state which permits learning. 
During this resonant state, the weight updation 
takes place. 
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Layers in ART 

 Input processing layer (L1)- 
Process the inputs 

 Output layer (L2) with the cluster 
units  

 Reset layer (R) - decides the 
degree of similarity of patterns 
placed on the same cluster by 
reset mechanism.  

 Input processing layer 
• Input layer(L1s) 
• Input Interface layer(L1I) 

 Bottom-up weights connect input 
interface layer and the output 
layer(uij). 

 Top-down weights connect the 
output layer and the interface 
layer(dij).  

The output layer is a competitive layer 
or a recognition region where the cluster 
units participates to check the closeness 
of the input patterns. 

 The interface layer is usually called the 
‘comparison region’, where it gets an 
input vector and transfers it to its best 
match in the recognition region. 

 The best match is the single neuron in 
the competitive layer whose set of 
weights closely matches the input 
vector.  

The reset layer compares the strength of 
the recognition match to the vigilance 
parameter.  

If the vigilance threshold is met, then 
the training or the updation of weights 
takes place, else the firing of the 
recognition neuron is inhibited until a 
new input vector is applied  
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Operation of the ART-1  
A binary input vector is presented to the input layer 
L1S  
The information is passed to its corresponding units in 
the input interface layer L1I. 
The interface units transmit the information to the 
output layer L2 cluster units through the bottom-up 
weights . 
 
The output units compete to become a winner.  
The largest net input to the output unit usually 
becomes the winner and the activation becomes 1. All 
the other output units will have an activation of 0. Let 
the winning cluster unit’s index is ‘J’.  
 
The information about the winner is sent from the 
output layer L2 to the interface layer L1S through the 
top-down weights dji .  
 
The interface unit’s activations is 1; if a unit receives a 
non-zero signal simultaneously from the input layer 
L1S and the output layer L2.  
 
Then, the norm of the vector I of the comparison 
region gives the number of components for which the 
top-down weight vector dJi for the winning unit J and 
the input vector Sp  are same as 1. 
 
The value of I gives a evaluate the degree of 
the match. The learning will occur only if the match is 
acceptable to the vigilance parameter. 
The updation of the weights is carried out if 
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1983, Geoffrey Hinton and Terry Sejnowski  
 
stochastic recurrent neural network . 
 
BMNN  is a network of symmetrically connected, neuron-like units that make 
stochastic decisions about whether to be on or off. Boltzmann machines have a 
simple learning algorithm that allows them to discover interesting features that 
represent complex regularities in the training data.  
 
 
 
 
 
 
 
 

Differences & Similarities with Hopfield NN 

Hopfield BMNN 

Local updation and Hebbian 
learning  

powerful stochastic learning 
scheme 

Deterministic updation of 
activations 

Stochastic  updation of 
activations 

 

Hidden layer is absent Hidden layers is present 

Symmetric Weights 
Random asynchronous activation updation. 

Units have no self-feedback  
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BMNN for Learning input and output patterns 
 
Every individual unit in BMNN will have any one of the two states 
namely, ON or OFF (1 or 0 in binary representation) or (1 or -1 in 
bipolar representation). This state of the unit is a function of 
probabilistic function of the states of its neighbouring units and 
the weights on its links to them. 
 
ON or OFF can be considered as the acceptance or rejection of a 
hypothesis of the problem. 
 
The energy of any global configuration of a BMNN 
 
 
 
 
wrs  Strength of connection between units r and s ;  
Sr  State of the unit (0 or 1) ; θr  Threshold of rth unit. 

 
Rejection or acceptance of a hypothesis for the is determined by 
an Energy gap. 
 
 
 
 
An Unit can be ON if its total net input obtained by summing up of 
the signals from the neighbouring units of the system exceeds its 
threshold. 

BMNN Architecture 



RADIAL BASIS FUNCTION 
NEURAL NETWORKS (RBF)  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTIFICIAL NEURAL NETWORKS II 

  

   

Moody and Darken, 1989;  
Hush and Horne, 1993; 
Wassermann, 1993  
The hidden layer units incorporates the specialised 
activation function called radial basis functions. These 
functions produce localized, bounded, and radially 
symmetric activations that decreases the distance from 
the function’s centres.  

RBFNN Architecture 

Gaussian Radial Basis function 
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SVM is a learning algorithm typically used for classification problems.  

•Text categorization 

•Character recognition 

•Image classification 

Derived from statistical learning theory by Vapnik and Chervonenkis 

Classification tasks based on drawing separating lines to distinguish between 
objects of different class memberships are known as ‘hyper plane classifiers’. 

SVM tries to minimize the upper bound of the generalization error and maximizes 
the margin between a separating hyper plane and the training data.  

The goal of the SVM is to optimize "generalization", the ability to correctly classify 
unseen data.  

It determines a linear decision boundary in the feature space by constructing the 
"optimal separating hyperplane" distinguishing the classes 
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 The two classes can be separated by many 
decision boundaries as shown in Fig (a, b, c).  

 Ambiguity to choose the one that is the best. 

 The decision boundary should be as far way from 
the data of both classes as possible. Therefore, 
the margin ‘m’ as shown in Fig (d) between the 
two classes has to be maximized by an 
optimization problem 

 X= {x1,x2,...,xn}  Points to be clasified; 

 yi ∈ {1,1}--- Class lable of xi 

 The decision boundary should classify all points 
correctly as 

 

 w and b are the weights and biases or the 
coefficients of a decision boundary 

 

Illustration : Linearly separable two class problem 

Decision Boundaries 
between Two Classes 



5. Once the training is over, a new set of data 
can be tested by computing the equation z  

SUPPORT VECTOR MACHINES 
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1. finding the solution to the constrained 
optimization problem as in equation is the 
training part of the SVM. 

Illustration : Linearly separable two class problem 

3. This is quadratic programming (QP) problem, 
where the optimal value of αi  can be recovered 
and w can be recovered by 

 

 

2. The minimization problem can be 
transformed into it dual as 

4. Many of the αi  zeros. The weights w will 
be a linear combination of a small number of 
data.  xi with non-zero αi  can be called 
support vectors (SV). tj  indices of the ‘s’ 
SVs then w is  

Decision 
Boundaries  
with αi 

coefficients 
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If  the set of points is inseparable by a straight line, then 
an error εi can be incorporated during classification 
which belongs to a field of soft margin hyperplane 
decision boundaries. 

Linearly inseparable two class problem 

Decision Boundaries with εi for 
linearly inseparable classes 

1. The equation for 
boundaries incorporating εi 
is 

2. The optimization 
problem can be formulated 
as 

3. The minimization problem 
can be transformed into it dual 
as 

4. w can be recovered by 
Alternate method: 
Input space  feature 
space. 
High Computation burden. 
Kernel mapping. 
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Electrical load forecasting is the process by which the electrical load at a future time 
is predicted based on past values of load as well as weather, economic and 
demographic factors. 
 
 
 
 

Factors influencing electrical load: 
Time Weather End user Connected loads 
and demographic and economic 
conditions 
 
 
 

Types of Load forecasting: 
Short-term  1 hour to several days 
Medium term  1 week to several months 
Long term  1 year to several years 
 
 
 

Methods to forecast electrical load 
Similar day approach, Regression models, 
Time series, Expert systems, Fuzzy logic 
and neural networks. 
 
 
 Types NN for Load forecasting 
Hopfield, Back propagation, Boltzmann 
machine. 
 
Most Commonly used: back propagation 
neural network with continuous valued 
functions and supervised learning 
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Training period: 
December 1 2010 to  
December 20 2010 

 
 
 

Data Sources: 
Electrical load data  PJM (Electricity 
Power Market) 
http://www.pjm.com/markets-and-
operations/energy/real-time/loadhryr.aspx 
 
Weather data  NOAA 
http://www7.ncdc.noaa.gov/CDO/georegi
on 
 
 
 
 
 
 

The training data is split into seven groups 
each containing data for a particular 
weekday.  
 
7 different neural networks are trained, 1 
for each weekday, with the 7 different 
training data sets. 
 
 

Testing period: 
December 25 2010 to  
December 31 2010 

 
 
 

http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www7.ncdc.noaa.gov/CDO/georegion
http://www7.ncdc.noaa.gov/CDO/georegion


ELECTRICAL LOAD FORECASTING 
USING MATLAB NEURAL 

NETWORK TOOLBOX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTIFICIAL NEURAL NETWORKS II 

  

   

Historical load data 
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Historical temperature data 
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Historical weather  data 
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Inbuilt Libraries to 
implement various 
types of NN such as  
perceptron, feed forward 
back propagation, 
Hopfield, radial basis and 
self-organizing map. 
 
 
 
 
 
 

MATLAB NN toolbox 

GUI: Graphical User 
Interface helps user to 
specify following  
parameters Input and 
target vectors, type of 
network, the transfer 
function of each layer, the 
learning rate etc,. 
 
In command window type  
 nntool 
 
 
 
 

Neural Network Toolbox GUI 
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Select data(from 
workspace or file) 

and import. 

MATLAB NN toolbox 

Neural network data manager GUI 

In this example, the 
data is stored in 

workspace. So, select 
‘import from MATLAB 

workspace’, select 
the variable 

‘input_sun’, and in 
destination, click 

‘Input Data’ . 
Similarly import  

Target data 
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create the neural network 
architecture as well as 

specify the training input 
and output data 

MATLAB NN toolbox 
GUI for creating the network 

In this example, Select  
Network type 

‘Feed forward backprop’ for 
feed forward back propagation 

network. 
Training function 

‘TRAINGD’ for gradient descent 
algorithm 

Performance function  
MSE 

No of Layers:2 
Number of neurons: 90 

& 
Press Create  
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In nntool GUI (Fig. 3.47), click 
the created network and then 

click Open  

MATLAB NN toolbox 

GUI for Network1  

In Training Info tab  select the Inputs as ‘input_sun’ and 
Targets as ‘output_sun  

In training parameters tab specify the number of epochs, 
learning rate (lr) and minimum gradient  

Click the ‘Train 
Network’ button 
to begin training 

of the neural 
network  
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Current status of the training is shown in 
the NN Training GUI 

MATLAB NN toolbox 

GUI for the 
constructed 

FFBPN neural 
network 

The neural network is said to be trained 
when the weight values are optimized such 
that the sum squared error of the training 

data is below a certain threshold or the 
number of validation checks have exceeded 

a set point. 
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The suitability of the neural network for 
load forecasting can be known by testing it 

against data not in the training set 

MATLAB NN toolbox 

To test the neural network, go to the 
network properties in GUI for Network1  

and simulate after selecting ‘test_in_sun’ as 
Inputs and  ‘test_out_sun’ as Targets.  

The output of the simulation will be stored 
in the nntool GUI under the Output Data 
section.  

Click Export button in nntool GUI to display 
the Export from Network/Data Manager 
window. Select the simulated output data 
variable and press Export. The data will now 
be saved to the workspace.  



ELECTRICAL LOAD FORECASTING 
USING MATLAB NN TOOLBOX 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

ARTIFICIAL NEURAL NETWORKS II 

  

   

The graph in shows the variation actual Vs expected load for 24 hours on 26 
December 2010, which is a Sunday.  

MATLAB NN toolbox 
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