
By

Prof. N. P. Padhy(IIT Roorkee)

And

Prof. S. P. Simon(NIT Trichy)

CHAPTER- 3

ARTIFICIAL NEURAL NETWORKS

 -Second Generation
 Explain the Backpropagation in Neural Networks
 Learn the working of Kohonnen Neural Networks
 Understand the concept of Learning Vector Quantization (LVQ)

Network
 Get familiar with Hamming Neural Networks and Hopfield Neural

Networks
 Explain the fundamentals of Bidirectional Associative Memory
 Elaborate on Adaptive Resonance Theory (ART) Networks
 Discuss the functioning of Boltzmann Machine
 Understand concepts of Radial Basis Neural Networks and Support

Vector Machines
 Conduct Electrical Load Forecasting using MatLab Neural Network

Toolbox

ORGANIZATION

ARTIFICIAL NEURAL NETWORKS II

BIDIRECTIONAL ASSOCIATIVE MEMORY

ADAPTIVE RESONANCE THEORY NEURAL NETWORKS

BOLTZMAN MACHINE NEURAL NETWORKS

RADIAL BASIS FUNCTION NEURAL NETWORKS

SUPPORT VECTOR MACHINES

ELECTRICAL LOAD FORECASTING USING MATLAB NEURAL NETWORK
TOOLBOX

INTRODUCTION TO II GENERATION NEURAL NETWORK

LEARNING VECTOR QUANTIZATION

KOHONEN NEURAL NETWORK

CLASSIFICATION OF ARTIFICIAL NEURAL NETWORK

HAMMING NEURAL NETWORK

HOPFIELD NEURAL NETWORK

INTRODUCTION TO SECOND
GENERATION NEURAL NETWORK

 Neurons of the second generation use continuous
activation function.

 Suitable for analog in and analog out applications.

 Example activation functions
 Sigmoid .
 Hyperbolic tangent.

 Examples neural networks.

 Feed-forward neural networks.
 Recurrent neural networks.

 Requires fewer neurons than a network of the first

generation
 Can approximate any analog function.

ARTIFICIAL NEURAL NETWORKS II

BACKPROPAGATION NEURAL
NETWORKS

Consider a simple neuron
 Neuron has a summing junction

and activation function.
 Any non linear function which

differentiable every where and
increases everywhere with sum
can be used as activation function.

 Examples:
 Logistic function.
 Arc tangent function.
 Hyperbolic tangent activation

function.
 These activation function makes

the multilayer network to have
greater representational power
than single layer network only
when non-linearity is introduced.

ARTIFICIAL NEURAL NETWORKS II

 Back propagation is a systematic
method for training multiple layer
ANN

 It is a generalization of Widrow-Hoff
error correction rule.

 80% of ANN applications uses back
propagation.

A simple neuron with many inputs

BACKPROPAGATION NEURAL
NETWORKS

The input to the activation function is sum
which is defined by the following equation

ARTIFICIAL NEURAL NETWORKS II





n

j

jjnn bWIWIWIWIsum
1

2211

Activation Function: Logistic Function

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf

Logistic function monotonically
increases from a lower limit (0 or -
1) to an upper limit (+1) as sum

increases. In which values vary
between 0 and 1, with a value of
0.5 when I is zero

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Activation Function: Arc Tangent

)*(tan
2

)(1 sumssumf 


Activation Function: Hyperbolic Tangent

sumssums

sumssums

ee

ee
Issumf

**

**

)*tanh()(









BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Need of Hidden layers

WEIGHTS

 A network with only two layers
(input and output) can only
represent the input with whatever
representation already exists in the
input data.

 If the data’s are discontinuous or
non-linearly separable, the innate
representation is inconsistent, and
the mapping cannot be learned using
two layers(Input & Output).

 Therefore, hidden layer(s) are used
between input and output layers.

INPUT HIDDEN OUTPUT

 Weights connects unit(neuron) in
one layer only to those in the next
higher layer.

 The output of the unit is scaled by
the value of the connecting weight,
and it is fed forward to provide a
portion of the activation for the units
in the next higher layer

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 The training
objective is to
adjust the
weights so that
the application of
a set of inputs
produces the
desired outputs.

 Back propagation
can be applied to
an artificial
neural network
with any number
of hidden layers.

 Consider a three-
layer network
where all
activation
functions are
logistic functions

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 The network is usually trained with a large number of input-output pairs.
1. Generate weights randomly to small random values (both positive and

negative) to ensure that the network is not saturated by large values
of weights (if all weights start at equal values, and the desired
performance requires unequal weights, the network would not train at
all).

2. Choose a training pair from the training set.
3. Apply the input vector to network input.
4. Calculate the network output.
5. Calculate the error, the difference between the network output and

the desired output.
6. Step 6: Adjust the weights of the network in a way that minimizes this

error.
7. Repeat steps 2-6 for each pair of input-output in the training set until

the error for the entire system is acceptably low.

Training procedure.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 Back propagation neural network training involves two passes.

 In the forward pass, the input signals moves forward from the network

input to the output.

 In the backward pass, the calculated error signals propagate backward

through the network, where they are used to adjust the weights.

 In the forward pass, the calculation of the output is carried out, layer by

layer, in the forward direction. The output of one layer is the input to the
next layer.

 In the reverse pass,
 The weights of the output neuron layer are adjusted first since the

target value of each output neuron is available to guide the adjustment
of the associated weights, using the delta rule.

 Next, we adjust the weights of the middle layers. As the middle layer
neurons have no target values, it makes the problem complex

Forward pass and backward pass.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 The number of hidden units depends on the number of input units.

“Any function of n variables may be represented by the superposition of a
set of 2n+1 univariate functions to derive the upper bound for the required
number of hidden units as one greater than twice the number of input
units”.

 Kolomogorov’s theorem

1. Never choose h to be more than twice the number of input units.
2. You can load p patterns of I elements into log2p hidden units. So never use

more. If we need good generalization, use considerably less.
3. Ensure that we must have at least 1/e times as many training examples as

we have weights in our network.
4. Feature extraction requires fewer hidden units than inputs.
5. Learning many examples of disjointed inputs requires more hidden units

than inputs.
6. The number of hidden units required for a classification task increases with

the number of classes in the task. Large networks require longer training
times.

Selection of number of hidden units.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 i, j, k Input layer, Hidden layer output layer.
 h, p, q Input neuron, Hidden neuron, Output neuron.
 Fpj Output of neuron ‘p’ in hidden layer ‘j’.
 Fqk Output of neuron ‘q’ in hidden layer ‘k’.
 Whp,j Weight connecting input neuron ‘h’ and hidden

neuron ‘p’ in the hidden layer ‘j’.
 Wpq,k Weight connecting hidden neuron ‘p’ and output

neuron ‘q’ in the output layer ‘k’.
 Dp Target output value of neuron ‘q’.

Calculation of Weights for Output Layer Neurons

Representation of neurons for output layer neurons weight

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

 The squared error signal ‘E’ is produced by calculating the
the difference between Dq and Oq (fq,k).

Calculation of Weights for Output Layer Neurons

2

.

22][
kqqq

fDEE 

By delta rule, the change in a weight is proportional to the rate of
change of the square error with respect to that weight.

kpq

q

qpkpq
W

E
W

.

2

..



 

Where ηp,q is the constant of proportionality called ‘learning rate’

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Calculation of Weights for Hidden Layer Neurons

 In the hidden layer of the network (say neuron ‘p’), there is no
specified desired response for the neuron.

 The error signal for a hidden neuron would have to be determined
recursively in terms of the error signals of all the neurons to
which the hidden neuron is directly connected.

 Since the hidden layers have no target vectors, the problem of
adjusting the weights of the hidden layers is a major issue.

 Back propagation trains hidden layers by propagating the
adjusted error back through the network, layer by layer, adjusting
the weight of each layer as it goes.

 The equations for the hidden layer are the same as for the output
layer except that the error term must be generated without a
target vector.

 Weight of neuron in the middle layer includes the contributions
from the errors in each neuron in the output layer to which it is
connected.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Calculation of Weights for Hidden Layer Neurons

 The procedure for calculating Whp,j is substantially the same as calculating
Wpq,k. Consider, the neuron (p) at layer ‘j’ is connected to ‘r’ number of
neurons in output layer ‘k’.

 Then the weight at iteration ‘t=t+1’ is given by





r

q
hphphjhpjhp

ItWtW
1

...
)()1(


 









r

1q

h

j.p

j.p

k.pqk.pqp.h

j.hp

2

p.hj.hp I
I

f
W

W

E
W

jp

jp

kpqkpqjhp
sum

f
W

.

.

...



 

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Factors influencing Back Propagation Training

The training time can be reduced by using
Bias: Networks with biases can represent relationships between inputs and
outputs more easily than networks without biases. Adding a bias (a + 1 input with
a training weight, which can be either positive or negative) to each neuron is
usually desirable to offset the origin of the activation function. The weight of the
bias is trainable similar to weight except that the input is always +1.

Momentum: The use of momentum enhances the stability of the training process.
 Momentum is used to keep the training process going in the same general
direction analogous to the way that momentum of a moving object behaves.
In back propagation with momentum, the weight change is a combination of the
current gradient and the previous gradient.

)()1(

)1()()1(

....

...

tWftW

tWtWtW

kpqjpkpqpqkpq

kpqkpqkpq







BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Consider a neural network where,
 All neurons have same logistic function with s=1;
 Learning rate of all neurons are 1.
The weight and bias updation are as follows,

Weight updation for a simple back propagation

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

The change in weights and bias values from output layer to hidden layer is given
by the following equations

   

   
























r

q
jpjpkpqkqkqkqqphjp

r

q
hjpjpkpqkqkqkqqphjhp

ffsWfffDsb

IffsWfffDsW

1
........

1
........

1*)1(**)1()(**)2(

)1(**)1()(**)2(





The change in weights and bias values from hidden layer to input layer is given by
the following equations

    
    1*1**2

1**2

.....

......

kqkqkqqqpkq

jpkqkqkqqqpkpq

fffDsb

ffffDsW









BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

The subscripts h, p, q are the index of input, hidden and output layer.
m, n, and r are number of neurons in input, hidden and output layer.
 Here, m = 2, n = 2 , r=1; Assume µ =0;

Training pattern

I1 I2

0.10 0.20

0.20 0.30

0.30 0.40

0.40 0.50

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 1

 Hidden layer units weighted sum and output

2.0;1.0
21
 II

Output layer unit weighted sum and output





m

h

hjhpjp IWsum
1

..

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf





n

p

jpkpqkq fWsum
1

...

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 1

2.0,1.0 21  II
Change in weights in the output layer

    
    1*1**2

1**2

.....

......

kqkqkqqqpkq

jpkqkqkqqqpkpq

fffDsb

ffffDsW









Change in bias in the output layer

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 1

Change in weights in the input layer

2.0;1.0
21
 II

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 1

 Change in bias in the input layer

2.0;1.0
21
 II

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

New weights in the output layer

New bias in the output layer

New weights in the input layer

New bias in the input layer

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 2

 Hidden layer units weighted sum and output

3.0;2.0
21
 II

Output layer unit weighted sum and output





m

h

hjhpjp IWsum
1

..

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf





n

p

jpkpqkq fWsum
1

...

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 2

3.0,2.0
21
 II

Change in weights in the output layer

    
    1*1**2

1**2

.....

......

kqkqkqqqpkq

jpkqkqkqqqpkpq

fffDsb

ffffDsW









Change in bias in the output layer

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 2

Change in weights in the input layer

3.0;2.0
21
 II

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 2

 Change in bias in the input layer

3.0;2.0
21
 II

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

New weights in the output layer

New bias in the output layer

New weights in the input layer

New bias in the input layer

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 3

 Hidden layer units weighted sum and output

4.0;3.0
21
 II

Output layer unit weighted sum and output





m

h

hjhpjp IWsum
1

..

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf





n

p

jpkpqkq fWsum
1

...

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 3

 Change in weights in the output layer

    
    1*1**2

1**2

.....

......

kqkqkqqqpkq

jpkqkqkqqqpkpq

fffDsb

ffffDsW









Change in bias in the output layer

4.0;3.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 3

Change in weights in the input layer

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

4.0;3.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 3

 Change in bias in the input layer

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

New weights in the output layer

New bias in the output layer

New weights in the input layer

New bias in the input layer

4.0;3.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 4

 Hidden layer units weighted sum and output

5.0;4.0
21
 II

Output layer unit weighted sum and output





m

h

hjhpjp IWsum
1

..

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf

1*

*
)1(

)1(

1
)(





 sums

sums
e

e
sumf





n

p

jpkpqkq fWsum
1

...

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 4

Change in weights in the output layer

    
    1*1**2

1**2

.....

......

kqkqkqqqpkq

jpkqkqkqqqpkpq

fffDsb

ffffDsW









Change in bias in the output layer

5.0;4.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 4

Change in weights in the input layer

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

5.0;4.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

Epoch Number 1 /

Pattern Number 4

 Change in bias in the input layer

   






 



r

q
hjpjpkpqkqkqkqqphjhp

IffsWfffDsW
1

........
)1(**)1()(**)2(

New weights in the output layer

New bias in the output layer

New weights in the input layer

New bias in the input layer

5.0;4.0
21
 II

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

 Sum Squared Error (Epoch Number 1)

 Sum Squared Error (Epoch Number 1)
The training should be carried out for more number of epochs to reduce the sum squared error,
and thereby the accuracy of the test output will be improved.

After training for 10,000 epochs with a sum squared error of 7.6902e-004. The final weights and
bias values that are obtained after training is given below.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Numerical Example 1:

After the training is over, the following are the results

Test input Desired output Actual/Predicted output

0.1 0.2 0.3000 0.3071

0.2 0.3 0.5000 0.4855

0.3 0.4 0.7000 0.7162

0.4 0.5 0.9000 0.8878

0.4 0.3 0.7000 0.7159

0.2 0.5 0.7000 0.7165

0.18 0.32 0.5000 0.4856

0.367 0.438 0.8050 0.8196

0.463 0.333 0.7960 0.8117

0.345 0.543 0.8880 0.8806

During the testing mode, the test inputs are given from the input patterns
already present in the training set, and the output results obtained are closer to
the desired one.

After training, Even if we give a typical or similar kind of input pattern not
present in the training set, the neural network is capable of giving an output
which is closer to the desired target pattern.

This shows the adaptability of the neural network for similar kind of input
patterns that are not present in the training process.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Character Recognition using Back propagation Neural Network

Character recognition is a trivial task for humans, however to make a computer
program that does character recognition is extremely difficult.

The main reason may be the many sources of variability and high level of
abstraction.

Variability
Noise for example, consists of random changes to a pattern, particularly near the
edges and a character with much noise may be interpreted as a completely different
character by a computer program.

High level of abstraction
There are thousands styles of type in common use and a character recognition
program must recognize most of these to be of any use.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Character Recognition using Back propagation Neural Network

Alphabets from A to Z are used for training, and have been tested with error
incorporated in the test pattern. The alphabet is represented using a 7 X 5 matrix of
35 binary bits as shown below.

BACKPROPAGATION NEURAL
NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Character Recognition using Back propagation Neural Network

The forward back propagation neural network is designed with 35
input and output units. The training set consists of 26 patterns.

Sigmoidal logistic function is used for all neurons, during the
testing mode, the actual output of the neural network is passed
through a binary logic to get binary output.

Once the training is carried of successful with less sum squared
error, the network is tested to recognize the patterns with and
without error.

The accuracy of the predicted output depends upon the increased
epochs of training and selection of suitable network parameters.
However, there are limitations that correspond to back propagation
neural network and the limitations of the learning rules that used
for training.

The accuracy of the output can be increased by increasing the
number of elements in the training patterns since they should have
at least a minimal difference between individual training patterns.
This will enable the network to generalize and train effectively.

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

In 1989, Finnish professor Teuvo Kohonen had developed a topological
structure analogous to a typical neural network with competitive units or
cluster units in network layers. This topology uses an unsupervised learning
procedure to produce a 2-dimensional discretized representation of the input
space of the training samples, called a map. Therefore, this network is called
‘self-organizing map’ or simply a ‘Kohonen neural network’.

Kohonen neural network creates a competition among cluster units similar to a
property observed in the brain but not in other artificial neural networks.

Clustering progresses by checking the closeness of the input patterns with the
weight vector associated with each of the cluster units. A cluster unit is
considered as a winner, if the Euclidean distance between the weight vector
associated with it and the given input pattern is the minimum when compared
among the other neighbour hood cluster units.

The weights associated with the winner cluster unit and neighbour cluster units
are updated. The neighbours are the cluster units nearer to the winner cluster
unit and can be considered based on a measure of geometrical boundary.

http://en.wikipedia.org/wiki/Finland
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen
http://en.wikipedia.org/wiki/Teuvo_Kohonen

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Step1: Initialize the random weight values. Give the topological parameter R
(geometric measure of the neighborhood boundary), and set the learning rate
within .
Step2: For each input pattern Ih training pair compute the Euculidean distance for
each output cluster unit k and Get the winner cluster unit index K for which the
ED is minimum.

Step3: Update the weights for all the k units within the neighbourhood boundary
of the winner K. Then, update the learning rate. Decrease the topological
parameter R at specified times after the completion of an epoch.

Repeat Steps 2,3 till the maximum number of epochs are reached.

 



nh

hhk IwkED
:1

2
)(

 )(*)()1(twxtwtw hkhhkhk  

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Step1: Initialize the random weight values. Give the topological parameter R
(geometric measure of the neighborhood boundary), and set the learning rate
within .
Step2: For each input pattern Ih training pair compute the Euculidean distance for
each output cluster unit k and Get the winner cluster unit index K for which the
ED is minimum.

Step3: Update the weights for all the k units within the neighbourhood boundary
of the winner K. Then, update the learning rate. Decrease the topological
parameter R at specified times after the completion of an epoch.

Repeat Steps 2,3 till the maximum number of epochs are reached.

 



nh

hhk IwkED
:1

2
)(

 )(*)()1(twxtwtw hkhhkhk  

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Clustering of Bipolar Input Patterns

Cluster 4 bipolar patterns into 2 clusters

Consider
n = 4
m = 2
Topological parameter R = 0,
learning rate (n)=0.9
geometrically decrease 0.5 times for every epoch.

The input pattern(I),
Initial Weights(W) .

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Clustering of Bipolar Input Patterns

Calculation of Euclidean Distance

The winner cluster unit is K = 2 because ED is
minimum. Therefore, the weights connected to
the winner cluster unit 2 should be updated

Epoch Number 1 /

 Pattern Number 1

Weight Updation

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Clustering of Bipolar Input Patterns

Calculation of Euclidean Distance

The winner cluster unit is K = 1 because ED is
minimum. Therefore, the weights connected to the
winner cluster unit 1 should be updated

Epoch Number 1 /

 Pattern Number 2

Weight Updation

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Clustering of Bipolar Input Patterns

Calculation of Euclidean Distance

The winner cluster unit is K = 1 because ED is
minimum. Therefore, the weights connected to the
winner cluster unit 1 should be updated

Epoch Number 1 /

 Pattern Number 3

Weight Updation

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Clustering of Bipolar Input Patterns

Calculation of Euclidean Distance

The winner cluster unit is K = 1 because ED is
minimum. Therefore, the weights connected to the
winner cluster unit 1 should be updated

Epoch Number 1 /

 Pattern Number 4

Weight Updation

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Numerical Characters

 This application aims to cluster 25 binary patterns representing numerals

from 1 to 9. They are represented by 9 X 7 matrix format.

 The objective is to cluster the 25 patterns into 9 groups. Each of the input

patterns are represented as binary input vectors .

 Let, n = 25, m = 2, initial topological parameter R = 4 . Let the learning rate

be 0.9 and will geometrically decrease 0.5 times for every epoch.

 The topological parameter R (geometrical radius) will be decreased by

subtracting a small value of 0.2 for every epoch. The value of R should be

rounded off to obtain an integer value.

KOHONEN NEURAL NETWORK
(KNN)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Numerical Characters

 Sample input test pattern for clustering

 Results: Clusters

 The simulation is conducted for 10 trial runs and frequency of occurrence of
clustered groups .

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Learning Vector Quantization (LVQ)
network is a supervised neural
network where the input vectors are
trained for a specific class or group
already mapped in the training set.

The architecture of the LVQ is similar
to the Kohonen neural network where
the number of output units is equal to
the number of available classes, but
without a topological structure which
is assumed for the output units.

The weight updation is carried out only
for the weight vector for which the
input vector corresponds to the output
unit. A reference input vector is
selected for a specific class.

Architecture of LVQ

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

1. Initialize the input vector as reference vector i.e., initial weight values and set the
learning rate(η) within 0.1 ≤n* η ≤1.

2. For each input pattern Ih training pair compute the Euclidean distance between input
vector and Weight vector for each output cluster unit k. Find the unit index K for
which the ED is minimum.

3. Update the weights for kth output unit

 If T=Ok,

 If T≠Ok,

4. Reduce the learning rate

 Repeat steps 2,3 & 4 till the maximum number of epochs is reached

Steps

 



nh

hhk IwkED
:1

2
)(

 )(*)()1(twxtwtw hkhhkhk  

 )(*)()(thkwhxthkw1thkw 

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Let, n = 4 and m = 2 and learning rate be
η=0.9 and will geometrically decrease 0.5
times for every epoch.

Initialize the input vector as reference
vector i.e., initial weight values and set
the learning rate(η) within 0.1 ≤n* η ≤1.

Arbitrarily select, the reference vector.

Here, I1 is selected as reference vector for
the first cluster and I2 is selected as
reference vector for the second cluster.

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 1

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

Output unit Class is 1. i.e. O2=1 ED
(1) is minimum.
Target Class is 1, i.e. T =1.

Since T = O2, the weights connected
to cluster unit 1 should be updated.

 



nh

hh IwED
:1

2

1)1(

0))1()1(()11(
)11()11()1(

22

22


ED

16))1(1()1)1((
)1)1(()1)1(()2(

22

22


ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 2

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

Output unit Class 2. i.e. O2=2 ED (1)
is minimum.
Target Class is 2, i.e. T =2.

Since T = O2, the weights connected
to cluster unit 1 should be updated.

 



nh

hh IwED
:1

2

1)1(

16)1)1(())1(1(
))1(1())1(1()1(

22

22


ED

02)11(2))1(1(

2))1(1(2))1(1()2(



ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 3

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

ED (1)=ED(2); T=2;

Weights corresponding to O1 and O2
are updated.

 



nh

hh IwED
:1

2

1)1(

8))1(1())1(1(
))1(1()11()1(
22

22


ED

8))1(1())1(1(
))1(1()11()2(

22

22


ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 4

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

ED(2) is minimum O=2; T=1;

T ≠ O2, Weights corresponding to O2
are updated.

 



nh

hh IwED
:1

2

1)1(

68.25)11()18.2(
))1(8.2())1(1()1(

22

22


ED

48.10)18.0()11(
))1(1())1(8.0()2(

22

22


ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 5

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

ED(1) is minimum O=1; T=1;

T = O1 ,

The weights connected to cluster unit
1 should be updated

 



nh

hh IwED
:1

2

1)1(

48.14)11()18.2(
)18.2())1(1()1(

22

22


ED

8328.41)142.2()18.2(
)11())1(42.2()2(

22

22


ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

Epoch Number 1

Pattern Number 6

Calculation of Euclidean Distance

(Cluster k=1)

(Cluster k=2)

ED(1) is minimum O=1; T=2;

T ≠ O1;
 The weights connected to cluster unit
1 should be updated

 



nh

hh IwED
:1

2

1)1(

0648.8))1(8.0())1(18.1(
)118.1())1(8.0()1(

22

22


ED

95.20))1(42.2())1(8.2(
)11())1(42.2()2(
22

22


ED

WEIGHT UPDATION

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Clustering of Bipolar Input Patterns in LVQ
Hand worked Example: Cluster 6 bipolar patterns into 2 clusters

RESULTS

At the second epoch, the learning rate
will geometrically decrease 0.5 times for
every epoch. Therefore, the learning rate
will be 0.45 for the starting of the second
epoch.

After 1000 epochs, the learning rate and
weights are found to be

302-8.3994e

Pattern 1- (1 1 1 -1), Pattern 4-
(-1 -1 1 1) and Pattern 5- (-1 1 1
1) belongs to the first output
unit.

Pattern 2- (-1 -1 -1 1), Pattern 3-
(1 -1 -1 -1) and Pattern 6- (-1 1 -
1 -1) belongs to the second
output unit.

LEARNING VECTOR
QUANTIZATION (LVQ)

ARTIFICIAL NEURAL NETWORKS II

Classification of Numerical Characters

This application aims cluster 25 binary patterns representing numerals from 1
to 9 using Matlab.
Numerals are represented by 9 X 7 matrix format. Some sample numeral
patterns are given below.

Class 1 2 3 4 5 6 7 8 9

Patterns 1,2,3 6 5,7,8 10,11, 12 9,13,14, 16 15
18,

19,20
17,22 4,21, 23, 24, 25

Numeral
Pattern

No

1 1,2,3

2 4,5,6

3 7,8,9

4 10,11,12

5 13,14

6 15,16,17

7 18,19,20

8 21,22

9 23,24,25

Pattern No. 1 (1a) ,2 (1b), 3(1c)

representing numeral 1

PatternNo.22(8b) representing numeral 8

Pattern No. 23(9a), 24(9b) representing

numeral 9

Here, n = 25. Let, m = 2, η=0.9 and decreases 0.5 times at each epoch. The
simulation of 1,000 epochs are carried out and the results are

Similar to patterns at

left, various patterns

representing

numerals are used

and the pattern

number of the

numerals are given

in Table .

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Lippmann (1987) modelled a two layer
bipolar network called Hamming neural
network. The first layer is the Hamming
net and the second layer is the MAXNET.

The first layer is a feed forward type
network which classifies the input
patterns based on minimum Hamming
distance. The Hamming distance (HD)
between any two vectors is the number
of components in which the vectors
differ.

The Hamming net uses MAXNET in the
second layer as a subnet to find the unit
with the largest net input. The second
layer operates as recurrent recall
network which suppresses all the outputs
except the initially obtained maximum
output of the first layer.

Architecture of HNN

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Let I (1-11111) and S (11-1-111) be the two fixed length bipolar vectors .
Hamming distance HD (I, S) is equal to 3.
The scalar product of A and B is

 ItS= [n-HD (I, S)]-HD (I, S)

If n is the number of components in the vectors, then [n-HD (I, S)] are the
number of components in which the vectors agree.

 ItS = n-2HD (I, S)

Let I be the input vector and S be the vector that represents the patterns placed
on a cluster. For a two layer classifier of bipolar vector, the strongest response
of a neuron indicates that the minimum HD exists between the two vectors I
and S. For setting up the weights and bias, the above equation is written as:

 HD (I, S) = It .S/2 +n/2

If the weights are fixed to one half of the standard vector S/2 and bias to n/2,
then the network will be able to find the input vector I, closest to the standard
vector S. This is done by finding the output unit with the largest net input.

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

The two standard bipolar patterns are S(1) = (1 1 -1 -1 1 1) and S(2) = (-1 -1 1 -1 1 1).
Here n= 6, m= 2 and I= 4.
The 4 bipolar input patterns (I), initial weights (W) and bias (B) are

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

mjWIBO
n

h

hjihjj ,..1,
1

 


The net input to each output unit of
the first layer for all the 4 input
patterns is calculated from

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Computation in the first layer

Computation in the second layer (MAXNET)

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Pattern 1
(1 1 1 -1 1 1)

0)(
,04580.0

2

2




sumf
sum

The non-zero input
unit j=1 of the
MAXNET is the winner

(1 1 1 -1 1 1) is closer
to S(1) = (1 1 -1 -1
1 1).

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Pattern 2
(-1 -1 -1 1 1 -1)

The non-zero input unit
j=2 of the MAXNET is
the winner

I2=(-1 -1 -1 1 1 -1)
is closer to
S(2) = (-1 -1 1 -1 1 1).

0)(
,04297.0

1

1




sumf
sum

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Pattern 3
(1 -1 -1 -1 1 1)

The non-zero input unit
j=1 of the MAXNET is
the winner.
I3(1 -1 -1 -1 1 1)
is closer to
S(1) = (1 1 -1 -1 1 1).

0)(
,04580.0

2

2




sumf
sum

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Illustration on Finding the Best Match with Standard Vector:
Hand worked example:
Cluster 4 bipolar patterns and find the patterns closest to 2 standard bipolar patterns

Pattern 4
(-1 -1 1 1 1 -1)

The non-zero input unit
j=2 of the MAXNET is
the winner.
I4 (-1 -1 1 1 1 -1)
icloser to
S(2) = (-1 -1 1 -1 1 1).

0)(
,00

1

1




sumf
sum

HAMMING NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

This application aims to recognize
the closest match of the input test
pattern of an alphabet with an
error. Here, the representation of
an alphabet is by a matrix of 7 X 5
bipolar elements.

Though Hamming neural network
can be used for clustering of
patterns, this application tries to
recognize the input patterns with
an error and finds the closest
match. Here, n = 35, m = 26
(Number of cluster units), and T =
26 (Number of input patterns).

Character Recognition through Clustering of Numerical Characters

Simulation Results of HNN
for Character Recognition

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

John Hopfield -1982- recurrent artificial
neural network

It is used as a content-addressable
memory systems with binary threshold
units.

A content-addressable memory systems
allows the recall of data on the degree of
similarity between the input patterns and
the patterns stored in memory.

Hopfield neural networks is an example
of Associative memory neural networks
(AMNNs).

AMNNs are single-layer nets in which the
weights are determined for the network
to store a set of pattern associations.

Hopfield Neural Network

In the Hopfield network, only one unit
updates it activations at a time based
on the signals it receives from each
other unit. Also, each unit continues to
receive an external signal in addition to
the signal from other units in the net.

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard
binary patterns S(1) = (1 1 1 1 0 0) and S(2) = (0 1 1 1 1 1).

Illustration of Settlement of Stable Input Patterns: Hand worked example

Here, P = 2, T = 3 and n = 6

Initialization of weights as per Hebb rule for binary numbers

The weight of the binary patterns are

If the patterns to be handled are bipolar, then the weights are,

Here the weights are initialized as,

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Test 3 binary input patterns and find the patterns that settles or converges to any one of 2 standard
binary patterns S(1) = (1 1 1 1 0 0) and S(2) = (0 1 1 1 1 1).

Illustration of Settlement of Stable Input Patterns: Hand worked example

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Pattern 1
(1 1 1 0 1 0)

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0)
and S(2) = (0 1 1 1 1 1).

Illustration of Settlement of Stable Input Patterns: Hand worked example

Let the order of the asynchronous updation of units be [4 3 6 5 1 2].
Computing the net input to the units (k=1)

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Pattern 2
(0 1 0 1 1 1)

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0)
and S(2) = (0 1 1 1 1 1).

Illustration of Settlement of Stable Input Patterns: Hand worked example

Let the order of the asynchronous updation of units be [3 1 6 4 2 5].
Computing the net input to the units (k=2)

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Pattern 3
(0 0 1 1 1 1)

Test 3 binary input patterns and find the patterns that settles or
converges to any one of 2 standard binary patterns S(1) = (1 1 1 1 0 0)
and S(2) = (0 1 1 1 1 1).

Illustration of Settlement of Stable Input Patterns: Hand worked example

Let the order of the asynchronous updation of units be [4 2 1 6 5 3].
Computing the net input to the units (k=3)

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

 The Hopfield network can be used for
pattern recognition to identify the
standard pattern associated with the input
test pattern.

 Here, 3 alphabets (A, B & C) are the
standard patterns.

 The representation of an alphabet is by a
matrix of 7X5 binary elements.

Character Recognition through Stabilization of Input Test Patterns

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Simulation Results for Test Input Patterns with Single Element Errors

Character Recognition through Stabilization of Input Test Patterns

HOPFIELD NEURAL NETWORK
(HNN)

ARTIFICIAL NEURAL NETWORKS II

Simulation Results

Character Recognition through Stabilization of Input Test Patterns

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

 Bart Kosko -1988

 BAM has the properties of two-layer non-
linear feedback neural networks

 Heteroassociative information is encoded
in a BAM by summing correlation weights
matrices obtained from the associative
pairs of the binary or bipolar patterns. The
architecture of the BAM consists of two
layers of neurons, connected by bi-
directional weights

 The weights of the BAM are initialized
based on the Hebb rule.

BAM Architecture

 For the bipolar vectors,  The activation functions of the and
layers for the binary vectors are Ith
and Oth

 The bidirectional weights of for the P
paired bipolar patterns are

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

 Suppose s(h) and T(k) are associated
P paired patterns.

 The bidirectional weights for the P
paired binary patterns are

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns

 Standard Binary Patterns

 Binary test patterns

 Here, P = 2, N = 4, n = 35 and m = 2.

 Store 2 paired binary standard patterns in BAM and test 4 binary test
patterns.

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns: Hand worked example

 Activation of the and layer of BAM Ith Oth

 Store 2 paired binary standard patterns in BAM and test 4 binary test
patterns.

 The P paired binary patterns are stored as weights using Hebb rule

 The weights are initialized

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns : Hand worked example

Pattern 1-
[00100010101000110001111111000
110001]
Computing the net input to the output
units (t=1)

 Store 2 paired binary standard
patterns in BAM and test 4
binary test patterns.

 Computing the net input to the input units (t=1)

checking the equilibrium state, the activations of the
output unit O1,m=[0 1] has already become equal to
T1,m= [0 1] the , A =
[00100010101000110001111111000110001], the
input test pattern (t=1) has converged and A is
associated with 1= [01]]

Pattern 1-
[00100010101000110001111111000110001]

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns : Hand worked example

Computing the net input to the output
units (t=2)

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Computing the net input to the input units (t=2)

checking the equilibrium state, the activations of the
output unit O2,m=[1 0] has already become equal to
T2,m =[1 0] the , B =
[11110100011000111110100011000111110], the
input test pattern (t=2) has converged and B is
associated with 2= [1 0]

Pattern 2-
[11110100011000111110100011000111110]

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns : Hand worked example

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Computing the net input to the input units (t=3)

checking the equilibrium state, the activations of the
output unit O3,m=[0 1] has already become equal to
T3,m =[0 1] the , A’ =
[10100010101000110001111111000110001], the
input test pattern (t=3) has converged and A’ is
associated with 1= [0 1]

Pattern 3-
[10100010101000110001111111000110001]

Computing the net input to the output
units (t=3)

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns : Hand worked example

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Computing the net input to the input units (t=4)

checking the equilibrium state, the activations of the
output unit O4,m=[1 0] has already become equal to
T4,m =[0 1] the , B’ =
[11110101011000111110100011000111110], the
input test pattern (t=4) has converged and B’ is
associated with 2= [1 0]

Pattern 4-
[11110101011000111110100011000111110]

Computing the net input to the output
units (t=4)

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

Illustration of Settlement of Stable Input Patterns : Hand worked example

Store 2 paired binary standard
patterns in BAM and test 4 binary
test patterns.

Computing the net input to the input units (t=4)

checking the equilibrium state, the activations of the
output unit O4,m=[1 0] has already become equal to
T4,m =[0 1] the , B’ =
[11110101011000111110100011000111110], the
input test pattern (t=4) has converged and B’ is
associated with 2= [1 0]

Pattern 4-
[11110101011000111110100011000111110]

Computing the net input to the output
units (t=4)

Since the all the input test patterns
had settled to any one of the stored
binary pattern, the iteration process of
the algorithm has reached its
stoppage criteria.

BIDIRECTIONAL ASSOCIATIVE
MEMORY (BAM)

ARTIFICIAL NEURAL NETWORKS II

BAM for Character Mapping
BAM can be used for mapping two unrelated patterns through hetero
association.

consider two pairs of binary patterns

Eights binary test patterns are given to BAM.
Here A’, B’; A’’, B’’ and A’’’, B’’’ are input test
patterns with single, double and three
element errors

The result shows that all the input test
patterns are correctly mapped to its
associated counter part, i.e, (A,1); (B,2);
(A’,1); (B’,2); (A’’,1); (B’’,2); (A’’’,1); and
(B’’’,2).

ADAPTIVE RESONANCE THEORY
(ART) NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Carpenter and Stephen Grosberg (1986)
The problems with competitive neural networks are
They always form stable clusters.
They are oscillatory when more input patterns are presented.
There is no guarantee that, as more inputs are applied to a neural

network used for clustering purpose, the weight matrix will eventually
converge and be stable.

The learning instability occurs because of the network’s adaptability (or
plasticity), which causes prior learning to be eroded by more recent
learning.

ART is designed to overcome the problems occurring in learning stability by a
modified type of competitive learning called adaptive resonance theory.

Types of ART networks:

ART-1 (1986) that can cluster only binary inputs;
ART-2 (1987) that can handle gray-scale inputs;
ART-3 (1989) that can handle analog inputs better;

ADAPTIVE RESONANCE THEORY
(ART) NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS II

ART uses a degree of expectations
called vigilance parameter.

Vigilance parameter is the user
specified value to decide the degree
of similarity essential for the input
patterns to be assigned to a cluster
unit.

Each input it is compared with the
prototype vector for a match.

If the match between the prototype
and the input vector is not
adequate, a new prototype or a
cluster unit is selected. In this way,
previous learned memories
(prototypes) are not eroded by new
learning.

The basic ART learning is an unsupervised one.
The term ‘resonance’ in ART is the state of the
network, when a class of a prototype vector
very closely matches to the current input
vector, leads to a state which permits learning.
During this resonant state, the weight updation
takes place.

ART NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Layers in ART

 Input processing layer (L1)-
Process the inputs

 Output layer (L2) with the cluster
units

 Reset layer (R) - decides the
degree of similarity of patterns
placed on the same cluster by
reset mechanism.

 Input processing layer
• Input layer(L1s)
• Input Interface layer(L1I)

 Bottom-up weights connect input
interface layer and the output
layer(uij).

 Top-down weights connect the
output layer and the interface
layer(dij).

The output layer is a competitive layer
or a recognition region where the cluster
units participates to check the closeness
of the input patterns.

 The interface layer is usually called the
‘comparison region’, where it gets an
input vector and transfers it to its best
match in the recognition region.

 The best match is the single neuron in
the competitive layer whose set of
weights closely matches the input
vector.

The reset layer compares the strength of
the recognition match to the vigilance
parameter.

If the vigilance threshold is met, then
the training or the updation of weights
takes place, else the firing of the
recognition neuron is inhibited until a
new input vector is applied

ART NEURAL NETWORKS

ARTIFICIAL NEURAL NETWORKS II

Operation of the ART-1
A binary input vector is presented to the input layer
L1S
The information is passed to its corresponding units in
the input interface layer L1I.
The interface units transmit the information to the
output layer L2 cluster units through the bottom-up
weights .

The output units compete to become a winner.
The largest net input to the output unit usually
becomes the winner and the activation becomes 1. All
the other output units will have an activation of 0. Let
the winning cluster unit’s index is ‘J’.

The information about the winner is sent from the
output layer L2 to the interface layer L1S through the
top-down weights dji .

The interface unit’s activations is 1; if a unit receives a
non-zero signal simultaneously from the input layer
L1S and the output layer L2.

Then, the norm of the vector I of the comparison
region gives the number of components for which the
top-down weight vector dJi for the winning unit J and
the input vector Sp are same as 1.

The value of I gives a evaluate the degree of
the match. The learning will occur only if the match is
acceptable to the vigilance parameter.
The updation of the weights is carried out if

BOLTZMAN MACHINE NEURAL
NETWORKS (BMNN)

ARTIFICIAL NEURAL NETWORKS II

1983, Geoffrey Hinton and Terry Sejnowski

stochastic recurrent neural network .

BMNN is a network of symmetrically connected, neuron-like units that make
stochastic decisions about whether to be on or off. Boltzmann machines have a
simple learning algorithm that allows them to discover interesting features that
represent complex regularities in the training data.

Differences & Similarities with Hopfield NN

Hopfield BMNN

Local updation and Hebbian
learning

powerful stochastic learning
scheme

Deterministic updation of
activations

Stochastic updation of
activations

Hidden layer is absent Hidden layers is present

Symmetric Weights
Random asynchronous activation updation.

Units have no self-feedback

BOLTZMAN MACHINE NEURAL
NETWORKS (BMNN)

ARTIFICIAL NEURAL NETWORKS II

BMNN for Learning input and output patterns

Every individual unit in BMNN will have any one of the two states
namely, ON or OFF (1 or 0 in binary representation) or (1 or -1 in
bipolar representation). This state of the unit is a function of
probabilistic function of the states of its neighbouring units and
the weights on its links to them.

ON or OFF can be considered as the acceptance or rejection of a
hypothesis of the problem.

The energy of any global configuration of a BMNN

wrs  Strength of connection between units r and s ;
Sr  State of the unit (0 or 1) ; θr  Threshold of rth unit.

Rejection or acceptance of a hypothesis for the is determined by
an Energy gap.

An Unit can be ON if its total net input obtained by summing up of
the signals from the neighbouring units of the system exceeds its
threshold.

BMNN Architecture

RADIAL BASIS FUNCTION
NEURAL NETWORKS (RBF)

ARTIFICIAL NEURAL NETWORKS II

Moody and Darken, 1989;
Hush and Horne, 1993;
Wassermann, 1993
The hidden layer units incorporates the specialised
activation function called radial basis functions. These
functions produce localized, bounded, and radially
symmetric activations that decreases the distance from
the function’s centres.

RBFNN Architecture

Gaussian Radial Basis function

SUPPORT VECTOR MACHINES
(SVM)

ARTIFICIAL NEURAL NETWORKS II

SVM is a learning algorithm typically used for classification problems.

•Text categorization

•Character recognition

•Image classification

Derived from statistical learning theory by Vapnik and Chervonenkis

Classification tasks based on drawing separating lines to distinguish between
objects of different class memberships are known as ‘hyper plane classifiers’.

SVM tries to minimize the upper bound of the generalization error and maximizes
the margin between a separating hyper plane and the training data.

The goal of the SVM is to optimize "generalization", the ability to correctly classify
unseen data.

It determines a linear decision boundary in the feature space by constructing the
"optimal separating hyperplane" distinguishing the classes

SUPPORT VECTOR MACHINES
(SVM)

ARTIFICIAL NEURAL NETWORKS II

 The two classes can be separated by many
decision boundaries as shown in Fig (a, b, c).

 Ambiguity to choose the one that is the best.

 The decision boundary should be as far way from
the data of both classes as possible. Therefore,
the margin ‘m’ as shown in Fig (d) between the
two classes has to be maximized by an
optimization problem

 X= {x1,x2,...,xn}  Points to be clasified;

 yi ∈ {1,1}--- Class lable of xi

 The decision boundary should classify all points
correctly as

 w and b are the weights and biases or the
coefficients of a decision boundary

Illustration : Linearly separable two class problem

Decision Boundaries
between Two Classes

5. Once the training is over, a new set of data
can be tested by computing the equation z

SUPPORT VECTOR MACHINES
(SVM)

ARTIFICIAL NEURAL NETWORKS II

1. finding the solution to the constrained
optimization problem as in equation is the
training part of the SVM.

Illustration : Linearly separable two class problem

3. This is quadratic programming (QP) problem,
where the optimal value of αi can be recovered
and w can be recovered by

2. The minimization problem can be
transformed into it dual as

4. Many of the αi zeros. The weights w will
be a linear combination of a small number of
data. xi with non-zero αi can be called
support vectors (SV). tj  indices of the ‘s’
SVs then w is

Decision
Boundaries
with αi

coefficients

SUPPORT VECTOR MACHINES
(SVM)

ARTIFICIAL NEURAL NETWORKS II

If the set of points is inseparable by a straight line, then
an error εi can be incorporated during classification
which belongs to a field of soft margin hyperplane
decision boundaries.

Linearly inseparable two class problem

Decision Boundaries with εi for
linearly inseparable classes

1. The equation for
boundaries incorporating εi
is

2. The optimization
problem can be formulated
as

3. The minimization problem
can be transformed into it dual
as

4. w can be recovered by
Alternate method:
Input space  feature
space.
High Computation burden.
Kernel mapping.

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Electrical load forecasting is the process by which the electrical load at a future time
is predicted based on past values of load as well as weather, economic and
demographic factors.

Factors influencing electrical load:
Time Weather End user Connected loads
and demographic and economic
conditions

Types of Load forecasting:
Short-term  1 hour to several days
Medium term  1 week to several months
Long term  1 year to several years

Methods to forecast electrical load
Similar day approach, Regression models,
Time series, Expert systems, Fuzzy logic
and neural networks.

 Types NN for Load forecasting
Hopfield, Back propagation, Boltzmann
machine.

Most Commonly used: back propagation
neural network with continuous valued
functions and supervised learning

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Training period:
December 1 2010 to
December 20 2010

Data Sources:
Electrical load data  PJM (Electricity
Power Market)
http://www.pjm.com/markets-and-
operations/energy/real-time/loadhryr.aspx

Weather data  NOAA
http://www7.ncdc.noaa.gov/CDO/georegi
on

The training data is split into seven groups
each containing data for a particular
weekday.

7 different neural networks are trained, 1
for each weekday, with the 7 different
training data sets.

Testing period:
December 25 2010 to
December 31 2010

http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www.pjm.com/markets-and-operations/energy/real-time/loadhryr.aspx
http://www7.ncdc.noaa.gov/CDO/georegion
http://www7.ncdc.noaa.gov/CDO/georegion

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Historical load data

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Historical temperature data

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Historical weather data

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Inbuilt Libraries to
implement various
types of NN such as
perceptron, feed forward
back propagation,
Hopfield, radial basis and
self-organizing map.

MATLAB NN toolbox

GUI: Graphical User
Interface helps user to
specify following
parameters Input and
target vectors, type of
network, the transfer
function of each layer, the
learning rate etc,.

In command window type
 nntool

Neural Network Toolbox GUI

ELECTRICAL LOAD FORECASTING
USING MATLAB NEURAL

NETWORK TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Select data(from
workspace or file)

and import.

MATLAB NN toolbox

Neural network data manager GUI

In this example, the
data is stored in

workspace. So, select
‘import from MATLAB

workspace’, select
the variable

‘input_sun’, and in
destination, click

‘Input Data’ .
Similarly import

Target data

ELECTRICAL LOAD FORECASTING
USING MATLAB NN TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

create the neural network
architecture as well as

specify the training input
and output data

MATLAB NN toolbox
GUI for creating the network

In this example, Select
Network type

‘Feed forward backprop’ for
feed forward back propagation

network.
Training function

‘TRAINGD’ for gradient descent
algorithm

Performance function
MSE

No of Layers:2
Number of neurons: 90

&
Press Create

ELECTRICAL LOAD FORECASTING
USING MATLAB NN TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

In nntool GUI (Fig. 3.47), click
the created network and then

click Open

MATLAB NN toolbox

GUI for Network1

In Training Info tab select the Inputs as ‘input_sun’ and
Targets as ‘output_sun

In training parameters tab specify the number of epochs,
learning rate (lr) and minimum gradient

Click the ‘Train
Network’ button
to begin training

of the neural
network

ELECTRICAL LOAD FORECASTING
USING MATLAB NN TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

Current status of the training is shown in
the NN Training GUI

MATLAB NN toolbox

GUI for the
constructed

FFBPN neural
network

The neural network is said to be trained
when the weight values are optimized such
that the sum squared error of the training

data is below a certain threshold or the
number of validation checks have exceeded

a set point.

ELECTRICAL LOAD FORECASTING
USING MATLAB NN TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

The suitability of the neural network for
load forecasting can be known by testing it

against data not in the training set

MATLAB NN toolbox

To test the neural network, go to the
network properties in GUI for Network1

and simulate after selecting ‘test_in_sun’ as
Inputs and ‘test_out_sun’ as Targets.

The output of the simulation will be stored
in the nntool GUI under the Output Data
section.

Click Export button in nntool GUI to display
the Export from Network/Data Manager
window. Select the simulated output data
variable and press Export. The data will now
be saved to the workspace.

ELECTRICAL LOAD FORECASTING
USING MATLAB NN TOOLBOX

ARTIFICIAL NEURAL NETWORKS II

The graph in shows the variation actual Vs expected load for 24 hours on 26
December 2010, which is a Sunday.

MATLAB NN toolbox

ARTIFICIAL NEURAL NETWORKS II

